Blog List

Friday 2 September 2016

Improving the design of long-term monitoring experiments in forests: a new method for the assessment of local soil variability by combining infrared spectroscopy and dendrometric data

Published Date
Author
  • Bernd Zeller
  • Marc Buée
  • Philippe Santenoise
  • Laurent Saint-André
Original Paper
DOI: 10.1007/s13595-016-0572-3

Cite this article as: 
Akroume, E., Zeller, B., Buée, M. et al. Annals of Forest Science (2016). doi:10.1007/s13595-016-0572-3

Abstract

Key Message

Near- and mid-infrared spectroscopy allows for the detection of local patterns of forest soil properties. In combination with dendrometric data, it may be used as a prospective tool for determining soil heterogeneity before setting up long-term forest monitoring experiments.

Context

Forest soils and stands generally exhibit higher spatial heterogeneity than other terrestrial ecosystems. This variability needs be taken into account before setting up long-term forest monitoring experiments to avoid multiple interactions between local heterogeneity and the factors tested in the experiment.

Aims

We hypothesized that raw near- and mid-infrared spectra can be used as an integrated proxy of a large set of soil properties. The use of this method, in combination with dendrometric data, should provide a quick and cost-effective tool for optimizing the design of experimental forest sites.

Methods

We assessed the local soil heterogeneity at 11 experimental sites in oak and beech stands, which belong to a new forest long-term ecological research (LTER) network. We used near- and mid-infrared spectroscopy in soil and litter samples. The spectra were subjected to principal components analyses (PCA) to determine the intra-site variability of the soil and litter layers.

Results

Based on mapped PCA coordinates and basic dendrometric data, it was possible to design the experiment and minimize the interactions between the treatment layout and the tested variables. The method was validated with chemical analyses of the soil. No interaction was detected at the set-up of the experiment between the treatment layout and chemical soil properties (C, N, C/N ratio, pH, CEC, Al, Mg, P2O5, Fe, Mn, Na, and K).

Conclusion

Near-infrared (NIR) and mid-infrared (MIR) spectroscopy is a useful tool for characterizing the overall heterogeneity of soil chemical properties. It can be used without any preliminary calibration. In combination with dendrometric data, it provides a reliable method for optimizing LTER plots in different types of ecosystems.

References

  1. Akroume E (2014) Impacts d’un retrait intense des rémanents sur la fertilité des sols forestiers et sur leur biodiversité. Rev For Fr LXVI 4:573–578
  2. Albrecht R, Joffre R, Petit JL, Terrom G, Périssol C (2008) Calibration of chemical and biological changes in cocomposting of biowastes using near-infrared spectroscopy. Environ Sci Technol 43:804–811CrossRef
  3. Barthès BG, Brunet D, Hien E, Enjalric F, Conche S, Freschet G, D’Annunzio R, Toucet-Louri J (2008) Determining the distributions of soil carbon and nitrogen in particle size fractions using near infrared reflectance spectrum of bulk soil samples. Soil Biol Biochem 40:1533–1537CrossRef
  4. Barthès BG, Brunet D, Rabary B, Ba O, Villenave C (2011) Near infrared reflectance spectroscopy (NIRS) could be used for characterization of soil nematode community. Soil Biol Biochem 43:1649–1659. doi:10.1016/j.soilbio.2011.03.023CrossRef
  5. Bellon-Maurel V, McBratney A (2011) Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—critical review and research perspectives. Soil Biol Biochem 43:1398–1410. doi:10.1016/j.soilbio.2011.02.019CrossRef
  6. Bikindou FDA, Gomat HY, Deleporte P, Bouillet JP, Moukini R, Mbedi Y, Ngouaka E, Brunet D, Sita S, Diazenza JB, Vouidibio J, Mareschal L, Ranger J, Saint-André L (2012) Are NIR spectra useful for predicting site indices in sandy soils under Eucalyptus stands in Republic of Congo? For Ecol Manag 266:126–137. doi:10.1016/j.foreco.2011.11.012CrossRef
  7. Brunet D, Barthès BG, Chotte JL, Feller C (2007) Determination of carbon and nitrogen contents in Alfisols, Oxisols and Ultisols from Africa and Brazil using NIRS analysis: effects of sample grinding and set heterogeneity. Geoderma 139:106–117. doi:10.1016/j.geoderma.2007.01.007CrossRef
  8. Cécillon L, Brun JJ (2007) Near-infrared reflectance spectroscopy (NIRS): a practical tool for the assessment of soil carbon and nitrogen budget. COST Action 639: Greenhouse-gas Budget of Soils Under Changing Climate and Land Use (BurnOut). 103–110
  9. Cécillon L, Barthès BG, Gomez C, Ertlen D, Genot V, Hedde M, Stevens A, Brun JJ (2009) Assessment and monitoring of soil quality using near-infrared reflectance spectroscopy (NIRS). Eur J Soil Sci 60:770–784. doi:10.1111/j.1365-2389.2009.01178.xCrossRef
  10. Chodak M, Niklińska M, Beese F (2007) Near-infrared spectroscopy for analysis of chemical and microbiological properties of forest soil organic horizons in a heavy-metal-polluted area. Biol Fertil Soils 44:171–180. doi:10.1007/s00374-007-0192-zCrossRef
  11. Coince A, Caël O, Bach C, Lengellé J, Cruaud C, Gavory F, Morin E, Murat C, Marçais B, Buée M (2013) Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecol 6:223–235. doi:10.1016/j.funeco.2013.01.002CrossRef
  12. D’Annunzio R, Zeller B, Nicolas M, Dhôte JF, Saint-André L (2008) Decomposition of European beech (Fagus sylvatica) litter: combining quality theory and 15N labelling experiments. Soil Biol Biochem 40:322–333. doi:10.1016/j.soilbio.2007.08.011CrossRef
  13. Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535CrossRef
  14. Duchaufour P, Bonneau M (1959) Une nouvelle méthode de dosage du phosphore assimilable dans les sols forestiers. Bull AFES 4:193–198
  15. Fayle TM, Turner EC, Basset Y, Ewers RM, Reynolds G, Novotny V (2015) Whole-ecosystem experimental manipulations of tropical forests. Trends Ecol Evol 30:334–346. doi:10.1016/j.tree.2015.03.010PubMedCrossRef
  16. Gholizadeh A, Borůvka L, Saberioon M, Vašát R (2013) Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues. Appl Spectr 67:1349–1362. doi:10.1366/13-07288CrossRef
  17. He Y, Song HY, Pereira AG, Gómez AH (2005) Measurement and analysis of soil nitrogen and organic matter content using near-infrared spectroscopy techniques. J Zhejiang Univ (Sci) 6B:1081–1086CrossRef
  18. Helmisaari HS, Hanssen KH, Jacobson S, Kukkola M, Luiro J, Saarsalmi A, Tamminen P, Tveite B (2011) Logging residue removal after thinning in Nordic boreal forests: long-term impact on tree growth. For Ecol Manag 261:1919–1927. doi:10.1016/j.foreco.2011.02.015CrossRef
  19. Hope GD (2006) Establishment of long-term soil productivity studies on acidic soils in the interior douglas-fir zone. LTSP Research Note. British Columbia Ministry of Forests and Range, Victoria BC, Canada, p 4
  20. Horta A, Malone B, Stockmann U, Minasny B, Bishop TFA, McBratney AB, Pallasser R, Pozza L (2015) Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: a prospective review. Geoderma 241–242:180–209. doi:10.1016/j.geoderma.2014.11.024CrossRef
  21. Kuang B, Mahmood HS, Quraishi M, Hoogmoed WB, Mouazen AM, van Henten EJ (2012) Chapter four—sensing soil properties in the laboratory, in situ, and on-line: a review. In: Donald L. Sparks (ed) Adv. Agron. Academic Press, p 155–223
  22. Lamsal S (2009) Visible near-infrared reflectance spectrocopy for geospatial mapping of soil organic matter. Soil Sci 174(1):35–44
  23. Lei X, Li F, Zhou S, Li Y, Chen D, Liu H, Pan Y, Shen X (2012) Spatial variability and lateral location of soil moisture monitoring points on cotton mulched drip irrigation field. In: Li D, Chen Y (eds). Computer and computing technologies in agriculture V, IFIP advances in information and communication technology. Springer Berlin Heidelberg, pp. 247–257.
  24. Ludwig B, Nitschke R, Terhoeven-Urselmans T, Michel K, Flessa H (2008) Use of mid-infrared spectroscopy in the diffuse-reflectance mode for the prediction of the composition of organic matter in soil and litter. J Plant Nutr Soil Sci 171:384–391. doi:10.1002/jpln.200700022CrossRef
  25. Ludwig B, Sawallisch A, Heinze S, Joergensen RG, Vohland M (2015) Usefulness of middle infrared spectroscopy for an estimation of chemical and biological soil properties—underlying principles and comparison of different software packages. Soil Biol Biochem 86:116–125CrossRef
  26. Marchant BP, Newman S, Corstanje R, Reddy KR, Osborne TZ, Lark RM (2009) Spatial monitoring of a non-stationary soil property: phosphorus in a Florida water conservation area. Eur J Soil Sci 60:757–769. doi:10.1111/j.1365-2389.2009.01158.xCrossRef
  27. Morris SJ (1999) Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: fine scale variability and microscale patterns. Soil Biol Biochem 31:1375–1386CrossRef
  28. Muñoz JD, Kravchenko A (2011) Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs. Geoderma 166:102–110. doi:10.1016/j.geoderma.2011.07.017CrossRef
  29. Nadelhoffer KJ, Boone RD, Bowden RD, Canary JD, Kaye J, Micks P et al (2004) The DIRT experiment: litter and root influences on forest soil organic matter stocks and function. In: Foster D, Aber J (eds) Forests in time: the environmental consequences of 1000 years of change in New England. Yale Univ. Press, New Haven, pp 300–315
  30. Nambiar EK, Ranger J, Tiarks A, Toma T (eds) (2004) Site management and productivity in tropical plantation forests: proceedings of workshops in Congo July 2001 and China February 2003. Center for International Forestry Research, Bogor
  31. Nykänen A, Jauhiainen L, Kemppainen J, Lindström K (2008) Field-scale spatial variation in yields and nitrogen fixation of clover-grass leys and in soil nutrients. Agr Food Sci 17:376–393. doi:10.2137/145960608787235568CrossRef
  32. Odlare M, Svensson K, Pell M (2005) Near infrared reflectance spectroscopy for assessment of spatial soil variation in an agricultural field. Geoderma 126:193–202. doi:10.1016/j.geoderma.2004.09.013CrossRef
  33. Orsini L, Rémy JC (1976) Utilisation du chlorure de Cobaltihexammine pour la détermination simultanée de la capacité d’échange et des bases échangeables des sols. Sci Sol 4:269–275
  34. Patzold S, Mertens FM, Bornemann L, Koleczek B, Franke J, Feilhauer H, Welp G (2008) Soil heterogeneity at the field scale: a challenge for precision crop protection. Precis Agric 9:367–390. doi:10.1007/s11119-008-9077-xCrossRef
  35. Powers R, Scott D, Sanchez F, Voldseth R, Page-Dumroese D, Elioff J, Stone D (2005) The North American long-term soil productivity experiment: findings from the first decade of research. For Ecol Manag 220:31–50. doi:10.1016/j.foreco.2005.08.003CrossRef
  36. Reeves J, McCarty G, Mimmo T (2002) The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environ Pollut 116:S277–S284PubMedCrossRef
  37. Sanchez MGB, Marques J, Siqueira DS, Camargo LA, Pereira GT (2014) Delineation of specific management areas for coffee cultivation based on the soil–relief relationship and numerical classification. Precis Agric 14:201–214. doi:10.1007/s11119-012-9288-z
  38. Sayer EJ (2005) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81(1):1–31. doi:10.1017/S1464793105006846
  39. Smithwick EA, Mack MC, Turner MG, Chapin FS III, Zhu J, Balser TC (2005) Spatial heterogeneity and soil nitrogen dynamics in a burned black spruce forest stand: distinct controls at different scales. Biogeochemistry 76:517–537CrossRef
  40. Smolander A, Kitunen V, Tamminen P, Kukkola M (2010) Removal of logging residue in Norway spruce thinning stands: long-term changes in organic layer properties. Soil Biol Biochem 42:1222–1228. doi:10.1016/j.soilbio.2010.04.015CrossRef
  41. Soriano-Disla JM, Janik LJ, Viscarra Rossel RA, Macdonald LM, McLaughlin MJ (2014) The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl Spectrosc Rev 49:139–186. doi:10.1080/05704928.2013.811081CrossRef
  42. Stenberg B, Viscarra Rossel RA, Mouazen AM, Wetterlind J (2010) Visible and near infrared spectroscopy in soil science. in: Adv. Agron. Elsevier, p 163–215
  43. Swanston CW, Myrold DD (1997) Incorporation of nitrogen from decomposing red alder leaves into plants and soil of a recent clearcut in Oregon. Can J For Res 27:1496–1502CrossRef
  44. Tatzber M, Mutsch F, Mentler A, Leitgeb E, Englisch M, Zehetner F, Djukic I, Gerzabek MH (2011) Mid-infrared spectroscopy for topsoil layer identification according to litter type and decompositional stage demonstrated on a large sample set of Austrian forest soils. Geoderma 166:162–170. doi:10.1016/j.geoderma.2011.07.025CrossRef
  45. Temimi M, Leconte R, Chaouch N, Sukumal P, Khanbilvardi R, Brissette F (2010) A combination of remote sensing data and topographic attributes for the spatial and temporal monitoring of soil wetness. J Hydrol 388:28–40. doi:10.1016/j.jhydrol.2010.04.021CrossRef
  46. Terhoeven-Urselmans T, Schmidt H, Georg Joergensen R, Ludwig B (2008) Usefulness of near-infrared spectroscopy to determine biological and chemical soil properties: importance of sample pre-treatment. Soil Biol Biochem 40:1178–1188. doi:10.1016/j.soilbio.2007.12.011CrossRef
  47. Thiffault E, Hannam KD, Paré D, Titus BD, Hazlett PW, Maynard DG, Brais S (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ Rev 19:278–309. doi:10.1139/a11-009CrossRef
  48. Versini A, Mareschal L, Matsoumbou T, Zeller B, Ranger J, Laclau JP (2014) Effects of litter manipulation in a tropical Eucalyptus plantation on leaching of mineral nutrients, dissolved organic nitrogen and dissolved organic carbon. Geoderma 232–234:426–436. doi:10.1016/j.geoderma.2014.05.018CrossRef
  49. Viscarra Rossel RA, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO (2006) Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75. doi:10.1016/j.geoderma.2005.03.007CrossRef
  50. Viscarra Rossel RA, Rizzo R, Demattê JAM, Behrens T (2010) Spatial modeling of a soil fertility index using visible–near-infrared spectra and terrain attributes. Soil Sci Soc Am J 74:1293. doi:10.2136/sssaj2009.0130CrossRef
  51. Vohland M, Besold J, Hill J, Fründ HC (2011) Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma 166:198–205. doi: 10.1016/j.geoderma.2011.08.001
  52. Zeller B, Colin-Belgrand M, Dambrine E, Martin F (2001) Fate of nitrogen released from 15N-labeled litter in European beech forests. Tree Physiol 21:153–162PubMedCrossRef
  53. Zhou Y, Wand S, Lu H, Xie L, Xiao D (2010) Forest soil heterogeneity and soil sampling protocols on limestone outcrops: example from China. ACTA CARSOLOGICA 1:39

For further details log on website :
http://link.springer.com/article/10.1007/s13595-016-0572-3

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...