Blog List

Tuesday 25 October 2016

Pyrolysis kinetics and product properties of softwoods, hardwoods, and the nut shell of softwood

Published Date
Energy
DOI: 10.1007/s11814-016-0142-2

Cite this article as: 
Kim, YM., Han, T.U., Hwang, B. et al. Korean J. Chem. Eng. (2016) 33: 2350. doi:10.1007/s11814-016-0142-2

Author 
  • Young-Min Kim
  • Tae Uk Han
  • ByeongAh Hwang
  • Boram Lee
  • Hyung Won Lee
  • Young-Kwon Park
  • Seungdo Kim

  • Abstract

    The pyrolysis of softwoods (Pinus (P.densiflora, P. koraiensis), hardwoods (Quercus acutissima and Liriodendron tulipifera) and nut shell of P. koraiensis was investigated using a thermogravimetric analyzer and fixed bed reactor. Thermogravimetric analysis showed that the maximum decomposition temperature of each biomass was influenced by the ash content and lignocellulosic composition of biomass. The activation energy values also varied according to the content of hemicellulose and lignin of each biomass. Large amounts of acids, such as acetic acid, were recovered from the hardwood pyrolysis reaction due to their high hemicellulose content. The nut shell of P. koraiensis and softwoods with a higher lignin content produced higher yields of phenolic compounds than the hardwoods.

    References

    1. L. Singh and Z.A. Wahid, J. Ind. Eng. Chem., 21, 70 (2015).CrossRefGoogle Scholar
    2. 2.
      S. Chayaporn, P. Sungsuk, S. Sunphorka, P. Kuchonthara, P. Piumsomboon and B. Chalermsinsuwan, Korean J. Chem. Eng., 32, 1081 (2015).CrossRefGoogle Scholar
    3. 3.
      M. Song, H.D. Pham, J. Seon and H.C. Woo, Korean J. Chem. Eng., 32, 567 (2015).CrossRefGoogle Scholar
    4. 4.
      H. J. Park, H. S. Heo, J.-H. Yim, J.-K. Jeon, Y. S. Ko, S.-S. Kim and Y.-K. Park, Korean J. Chem. Eng., 27, 73 (2010).CrossRefGoogle Scholar
    5. 5.
      S.-H. Lee, M.-S. Eom, K.-S. Yoo, N.-C. Kim, J.-K. Jeon, Y.-K. Park, B.-H. Song and S.-H. Lee, J. Anal. Appl. Pyrol., 83, 110 (2008).CrossRefGoogle Scholar
    6. 6.
      H. S. Choi, Y. S. Choi and H. C. Park, Korean J. Chem. Eng., 27, 1164 (2010).CrossRefGoogle Scholar
    7. 7.
      T.U. Han, Y.-M. Kim, C. Watanabe, N. Teramae, Y.-K. Park, S. Kim and Y. Lee, J. Ind. Eng. Chem., 32, 345 (2015).CrossRefGoogle Scholar
    8. 8.
      Y. J. Bae, C. Ryu, J.-K. Jeon, J. Park, D. J. Suh, Y.-W. Suh, D. Chang and Y.-K. Park, Bioresour. Technol., 102, 3512 (2011).CrossRefGoogle Scholar
    9. 9.
      S.-S. Kim, H.V. Ly, G.-H. Choi, J. Kim and H. C. Woo, Bioresour. Technol., 123, 445 (2012).CrossRefGoogle Scholar
    10. 10.
      Y.-M. Kim, H.W. Lee, S.-H. Lee, S.-S. Kim, S. H. Park, J.-K. Jeon, S. Kim and Y.-K. Park, Korean J. Chem. Eng., 28, 2012 (2011).CrossRefGoogle Scholar
    11. 11.
      Y.-M. Kim, H.W. Lee, S. Kim, C. Watanabe and Y.-K. Park, Bioenerg. Res., 8, 431 (2015).CrossRefGoogle Scholar
    12. 12.
      Y.-M. Kim, J. Jae, H.W. Lee, T.U. Han, H. Lee, S. H. Park, S. Kim, C. Watanabe and Y.-K. Park, Energy Convers. Manage. (2016), DOI:10.1016/j.enconman.2016.02.065.Google Scholar
    13. 13.
      H. S. Heo, H. J. Park, J.-I. Dong, S. H. Park, S. Kim, D. J. Suh, Y.-W. Suh, S.-S. Kim and Y.-K. Park, J. Ind. Eng. Chem., 16, 27 (2010).CrossRefGoogle Scholar
    14. 14.
      J.W. Kim, S.-H. Lee, S.-S. Kim, S. H. Park, J.-K. Jeon and Y.-K. Park, Korean J. Chem. Eng., 28, 1867 (2011).CrossRefGoogle Scholar
    15. 15.
      B.-S. Kim, Y.-M. Kim, H.W. Lee, J. Jae, D. H. Kim, S.-C. Jung, C. Watanabe and Y.-K. Park, ACS Sustainable Chem. Eng.4, 1354 (2016).CrossRefGoogle Scholar
    16. 16.
      E.H. Lee, R.-S. Park, H. Kim, S. H. Park, S.-C. Jung, J.-K. Jeon, S. C. Kim and Y.-K. Park, J. Ind. Eng. Chem., 37, 18 (2016).CrossRefGoogle Scholar
    17. 17.
      M.G. Gronli, G. Varhegyi and C.D. Blasi, Ind. Eng. Chem. Res., 41, 4201 (2002).CrossRefGoogle Scholar
    18. 18.
      S. Wang, B. Ru, H. Lin and W. Sun, Fuel, 150, 243 (2015).CrossRefGoogle Scholar
    19. 19.
      S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen and T. Fransson, Biotechnol. Adv., 27, 562 (2009).CrossRefGoogle Scholar
    20. 20.
      B.G. Diehl, N.R. Brown, C.W. Frantz, M.R. Lumadue and F. Cannon, Carbon, 60, 531 (2013).CrossRefGoogle Scholar
    21. 21.
      J. Zhao, W. Xiuwen, J. Hu, Q. Liu, D. Shen and R. Xiao, Polym. Degrad. Stab., 108, 133 (2014).CrossRefGoogle Scholar
    22. 22.
      Y.-M. Kim, S. Kim, T.U. Han, Y.-K. Park and C. Watanabe, J. Anal. Appl. Pyrol., 110, 435 (2014).CrossRefGoogle Scholar
    23. 23.
      S.H. Park, H. J. Cho, C. Ryu and Y.-K. Park, J. Ind. Eng. Chem., 36, 314 (2016).CrossRefGoogle Scholar
    24. 24.
      J. H. Ko, R.-S. Park, J.-K. Jeon, D. H. Kim, S.-C. Jung, S. C. Kim and Y.-K. Park, J. Ind. Eng. Chem., 32, 109 (2015).CrossRefGoogle Scholar
    25. 25.
      ASTM E698-11 Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method.
    26. 26.
      J. S. Kim, Korean Chem. Eng. Res., 51, 303 (2013).CrossRefGoogle Scholar
    27. 27.
      J.-H. Jang, S.-H. Lee and N.-H. Kim, J. Korean Wood Sci. Technol.42, 700 (2014).CrossRefGoogle Scholar
    28. 28.
      W. Jin, K. Singh and J. Zondlo, Agriculture, 3, 12 (2013).CrossRefGoogle Scholar
    29. 29.
      M. I. Jahirul, M.G. Rasul, A.A. Chowdhury and N. Ashwath, Energies, 5, 4952 (2012).CrossRefGoogle Scholar
    30. 30.
      H. Yang, R. Yan, H. Chen, D. H. Lee and C. Zheng, Fuel, 86, 1781 (2007).CrossRefGoogle Scholar
    31. 31.
      Y. Wu, Z. Zhao, H. Li and F. He, J. Fuel Chem. Technol.37, 427 (2009).CrossRefGoogle Scholar
    32. 32.
      H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee and D.T. Liang, Energy Fuels, 20, 388 (2006).CrossRefGoogle Scholar
    33. 33.
      I.-Y. Eom, K.-H. Kim, J.-Y. Kim, S.-M. Lee, H.-M. Yeo, I.-G. Choi and J.-W. Choi, Bioresour. Technol., 102, 3437 (2011).CrossRefGoogle Scholar
    34. 34.
      I.-Y. Eom, J.-Y. Kim, T.-S. Kim, S.-M. Lee, D. Choi, I.-G. Choi and J.-W. Choi, Bioresour. Technol., 104, 687 (2012).CrossRefGoogle Scholar
    35. 35.
      Q. Liu, S. Wang, K. Wang, Z. Luo and K. Cen, Korean J. Chem. Eng., 26, 548 (2009).CrossRefGoogle Scholar
    36. 36.
      G. Varhegyi, M. J. Antal, E. Jakab and P. Szabo, J. Anal. Appl. Pyrol., 42, 73 (1997).CrossRefGoogle Scholar
    37. 37.
      T. Hosoya, H. Kawamoto and S. Saka, J. Anal. Appl. Pyrol., 85, 237 (2009).CrossRefGoogle Scholar
    38. 38.
      D. J. Nowakowski, J.M. Jones, R.M.D. Brydson and A.B. Ross, Fuel, 86, 2389 (2007).CrossRefGoogle Scholar
    39. 39.
      S. Wang, B. Ru, H. Lin and Z. Luo, Bioresour. Technol., 143, 378 (2013).CrossRefGoogle Scholar

    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S1018363915000252

    No comments:

    Post a Comment

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...