Thursday, 24 November 2016

Deflections in sawn timber beams with stochastic properties

Published Date
Original
DOI: 10.1007/s00107-016-1124-0

Cite this article as: 
García, D.A. & Rosales, M.B. Eur. J. Wood Prod. (2016). doi:10.1007/s00107-016-1124-0

Author
Abstract

A stochastic model is proposed to study the behavior of structural sawn beams of Argentinean Eucalyptusgrandis with the aim of improving the predictability of the elastic deformations. The enhancement of the mid-span deflection calculation is based on a probabilistic model of the Modulus of Elasticity (MOE) and the representation of its lengthwise variability through a random field. The standard model that uses a MOE variable assumed random from piece to piece but deterministic (constant) within each piece is obtained as a particular case. In order to obtain a statistical representation of the MOE, the Principle of Maximum Entropy (PME) is employed. Experimental data obtained from bending tests are employed to find the parameters of the derived Probability Density Function (PDF). The PDF of the mid-span deformations is numerically obtained through the Stochastic Finite Element Method (SFEM) and Monte Carlo Simulations (MCS). Numerical results are validated with experimental values. Deflections of structural sized beams under usual loads are obtained. Finally, the stochastic model is used to compare with the serviceability requirements established in the Argentinean design code. It is shown that the structural performance of timber beams is found through a more realistic material approach.

References 

  1. ASTM D 198 (2002) Standard test methods of static tests of lumber in structural sizes. American Society for Testing and Materials (ASTM), West Conshohocken, United States
  2. Bathe KJ (1982) Finite element procedures in engineering analysis. Prentice-Hall, New JerseyGoogle Scholar
  3. Benjamin RJ, Cornell CA (1970) Probability, statistics and decision for civil engineers. McGraw-Hill, New YorkGoogle Scholar
  4. Brandner R (2012) Stochastic system actions and effects in engineered timber products and structures. PhD thesis, Graz University of Technology
  5. Brandner R, Schickhofer G (2015) Probabilistic models for the modulus of elasticity and shear in serial and parallel acting timber elements. Wood Sci Technol 49(1):121–146CrossRefGoogle Scholar
  6. CIRSOC 601 (2013) Argentinean standard of timber structures (In Spanish). Instituto Nacional de Tecnología Industrial (INTI)- Centro de Investigación de los Reglamentos Nacionales de Seguridad para las Obras Civiles (CIRSOC), Buenos Aires
  7. Czmoch I (1998) Influence of structural timber variability on reliability and damage tolerance of timber beams. PhD thesis, Luleå Tekniska Universitet, Luleå
  8. Der Kiureghian A, Ke JB (1988) The stochastic finite element method in structural reliability. Probab Eng Mech 3(2):83–91CrossRefGoogle Scholar
  9. Der Kiureghian A, Liu PL (1986) Structural reliability under incomplete probability information. J Eng Mech-ASCE 112:85–104CrossRefGoogle Scholar
  10. Ditlevsen O, Källsner B (2005) Span-dependent distributions of the bending strength of spruce timber. J Eng Mech-ASCE 131(5):485–499CrossRefGoogle Scholar
  11. EN 338 (2009) Structural timber. Strength classes; German version. European Committee for Standardization (CEN). DIN Deutsches Institut fr Normung e. V., Berlin
  12. EN 384 (1996) Structural timber. Determination of characteristic values of mechanical properties and density (in Spanish). AENOR-Asociación Española de Normalización y Certificación, Madrid
  13. EN 408 (1996) Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties (in Spanish). AENOR-Asociación Española de Normalización y Certificación, Madrid
  14. Fink G, Köhler J (2014) Model for the prediction of the tensile strength and tensile stiffness of knot clusters within structural timber. Eur J Wood Prod 72(3):331–341CrossRefGoogle Scholar
  15. García D, Sampaio R, Rosales M (2016) Eigenproblems in timber structural elements with uncertain properties. Wood Sci Technol. doi:10.1007/s00226-016-0810-8
  16. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New YorkCrossRefGoogle Scholar
  17. IRAM 9662-2 (2006) Glued laminated timber. Visual strength grading of boards, part 2: boards of Eucalyptus grandis (in Spanish). Argentinean Institute for Standardization and Certification (IRAM), Buenos Aires
  18. Isaksson T (1999) Modeling the variability of bending strength in structural timber: length and load configuration effects. PhD thesis, Lund Institute of Technology, Lund
  19. Jaynes E (1957) Information theory and statistical mechanics. Phys Rev 106(4):620–630CrossRefGoogle Scholar
  20. Kandler G, Füssl J, Eberhardsteiner J (2015a) Stochastic finite element approaches for wood-based products: theoretical framework and review of methods. Wood Sci Technol 49(5):1055–1097CrossRefGoogle Scholar
  21. Kandler G, Füssl J, Serrano E, Eberhardsteiner J (2015b) Effective stiffness prediction of glt beams based on stiffness distributions of individual lamellas. Wood Sci Technol 49(6):1101–1121CrossRefGoogle Scholar
  22. Kline DE, Woeste FE, Bendtsen B (1986) Stochastic model for modulus of elasticity of lumber. Wood Fiber Sci 18(2):228–238Google Scholar
  23. Köhler J (2007) Reliability of timber structures. PhD thesis, Swiss Federal Institute of Technology, Zürich
  24. Köhler J, Sørensen JD, Faber MH (2007) Probabilistic modeling of timber structures. Struct Saf 29(4):255–267CrossRefGoogle Scholar
  25. Lam F, Varoğlu E (1991) Variation of tensile strength along the length of lumber. Part 2: Model development and verification. Wood Sci Technol 25(6):449–458CrossRefGoogle Scholar
  26. Melchers RE (1999) Structural reliability: analysis and prediction. Wiley, New YorkGoogle Scholar
  27. Mulani S (2006) Uncertainty quantification in dynamic problems with large uncertainties. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg
  28. NDS (2005) National Design Specification for Wood Construction. American Forest & Paper Association (AF&PA)—American Wood Council (AWC)
  29. Piter J (2003) Strength grading of sawn timber as structural material: development of a method for the Argentinean Eucalyptus grandis (in Spanish). PhD thesis, Universidad Nacional de la Plata, La Plata
  30. Piter J, Zerbino R, Blaß H (2003) Relationship between global and local modulus of elasticity in beams of argentinean eucalyptus grandis. Maderas Ciencia y Tecnología 5(2):107–116CrossRefGoogle Scholar
  31. Piter J, Zerbino R, Blaß H (2004a) Visual strength grading of Argentinean Eucalyptus grandis. Holz Roh Werkst 62(1):1–8CrossRefGoogle Scholar
  32. Piter J, Zerbino R, Blaß H (2004b) Machine strength grading of argentinean eucalyptus grandis: main grading parameters and analysis of strength profiles according to european standards. Holz Roh Werkst 62(1):9–15CrossRefGoogle Scholar
  33. Porteous J, Kermani A (2007) Structural timber design to Eurocode 5. Wiley
  34. SBN 1980 (1981) Swedish Building Code (in Swedish). National Swedish Board of Physical Planning and Building, Stockholm
  35. Shannon C (1948) A mathematical theory of communication. Bell Sys Technol J 27:379–423CrossRefGoogle Scholar
  36. Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability: a state-of-the-art report. Department of Civil and Environmental Engineering, University of California
  37. Wang Y, Foschi R (1992) Random field stiffness properties and reliability of laminated wood beams. Struct Saf 11(3–4):191–202CrossRefGoogle Scholar

For further details log on website :
http://link.springer.com/article/10.1007/s00107-016-1127-x

No comments:

Post a Comment