Blog List

Saturday 17 December 2016

Published Date
Original Paper
DOI: 10.1

Cite this article as: 
Xu, F. & Li, D. J Polym Environ (2016). doi:10.1007/s10924-016-0903-3

Author
Abstract

By using poly(propylene glycol)bis(2-aminopropyl ether) (D230) as curing agent, we have prepared color-stable hydrogenated Bisphenol A (HBA) epoxy polymers, containing TiO2nanoparticles. The loading and size of TiO2 nanoparticles (5 ~ 10, 21, 200 ~ 400 nm) are changed in order to investigate their photocatalytic effect on removing pollutants deposited on the surface of stone. HBA/D230 polymers containing different amounts of TiO2nanomaterials were applied to methyl orange (MeO) on the limestone with exposure to the dry and wet environment, respectively. The results showed that the modification of HBA by addition of titanium dioxide particles substantially not only enhanced its protective efficiency but also rendered the treated stone surface self-cleaning ability. The photocatalytic degradation effect of MeO at the concentration of 0.001 M was the best when the size of TiO2nanoparticles was between 200 ~ 400 nm. Compared to those in dry environment, the decrease of the content of MeO in samples exposed to wet environment was due to humidity on the surface of limestone.

References 

  1. Characterization and origin of weathering crusts on Kylin carved-stone, Kylin countryside, Nanjing-a case study. J Cult Herit 11:228–232CrossRefGoogle Scholar
  2. 2.
    Licciulli A, Calia A, Lettieri M, Diso D, Masieri M, Franza S, Amadelli R, Casarano G (2011) Photocatalytic coating on limestone. J Sol–Gel Sci Technol 60:437–444CrossRefGoogle Scholar
  3. 3.
    Pinho L, Elhaddad F, Facio DS, Mosquera MJ (2013) A novel TiO2-SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci 275:389–396CrossRefGoogle Scholar
  4. 4.
    Quagliarini E, Bondioli F, Goffredo G, Cordoni C, Munafo P (2012) Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Constr Build Mater 37:51–57CrossRefGoogle Scholar
  5. 5.
    Tsakalof A, Manoudis P, Karapanagiotis I, Chryssoulakis I, Panayiotou C (2007) Assessment of synthetic polymeric coatings for the protection and preservation of stone monuments. J Cult Herit 8:69–72CrossRefGoogle Scholar
  6. 6.
    Pinho L, Mosquera MJ (2013) Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings:Influence of particle size and loading. Appl Catal B Environ 134–135:205–221CrossRefGoogle Scholar
  7. 7.
    Krishnan P, Zhang M, Yu L, Feng H (2013) Photocatalytic degradation of particulate pollutants and self-cleaning performance of TiO2-containing silicate coating and mortar. Constr Build Mater 44:309–316CrossRefGoogle Scholar
  8. 8.
    Bergamonti L, Alfieri I, Lorenzi L, Montenero A, Predieri G, Barone G, Mazzoleni P, Pasquale S, Lottici PP (2013) Nanocrystalline TiO2 by sol–gel: characterization and photocatalytic activity on Modica and Comiso stones. Appl Surf Sci 282:165–173CrossRefGoogle Scholar
  9. 9.
    Bergamonti L, Alfieri I, Lorenzi A, Predieri G, Barone G, Gemelli G, Mazzoleni P, Raneri S, Bersani D, Lottici PP (2015) Nanocrystalline TiO2 coatings by sol–gel: photocatalytic activity on Pietra di Noto biocalcarenite. J Sol–Gel Sci Technol 75:141–151CrossRefGoogle Scholar
  10. 10.
    Karatasios I, Katsiotis M, Likodimos V, Kontos A, Papavassiliou G, Falaras P, Kilikoglou V (2010) Photo-induced carbonation of lime-TiO2 mortars. Appl Catal B Environ 95:78–86CrossRefGoogle Scholar
  11. 11.
    Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photoch Photobio C 1:1–21CrossRefGoogle Scholar
  12. 12.
    Chabas A, Gentaz L, Lombardo T, Sinegre R, Falcone R, VeritàM, Cachier H (2010) Wet and dry atmospheric deposition on TiO2 coated glass. Environ Pollut 158:3507–3512CrossRefGoogle Scholar
  13. 13.
    La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74:186–191CrossRefGoogle Scholar
  14. 14.
    Wei X, Yang Z, Tay SL, Gao W (2014) Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating. Appl Surf Sci 290:274–279CrossRefGoogle Scholar
  15. 15.
    Melo MJ, Bracci S, Camaiti M, Chiantore O, Piacenti F (1999) Photodegradation of acrylic resins used in the conservation of stone Polym Degrad Stabil 66:23–30CrossRefGoogle Scholar
  16. 16.
    Ciardelli F, Aglietto M, Montagnini di Mirabello L, Passaglia E, Giancristoforo S, Castelvetro V, Ruggeri G (1997) New fluorinated acrylic polymers for improving weatherability of building stone materials. Prog Org Coat 32:43–50CrossRefGoogle Scholar
  17. 17.
    Favaro M, Mendichi R, Ossola F, Simon S, Tomasin P, Vigato PA (2007) Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part II: photo-oxidative and salt-induced weathering of acrylicesilicone mixtures. Polym Degrad Stabil 92:335–351CrossRefGoogle Scholar
  18. 18.
    Yoon IN, Lee Y, Kang D, Min J, Won J, Kim M, Kang YS, Kim SH, Kim JJ (2011) Modification of hydrogenated Bisphenol A epoxy adhesives using nanomaterials. Int J Adhes Adhes 31:119–125CrossRefGoogle Scholar
  19. 19.
    General Administration of Quality Supervision, Inspection and Quarantine. Test sieves of metal wire cloth, GB/T 6003.1–1997. China Standards Press, Beijing
  20. 20.
    Drdácký M, Lesák J, Rescic S, Slí´źkováZ, Tiano P, Valach J (2012) Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater Struc 45:505–520CrossRefGoogle Scholar
  21. 21.
    Xu F, Li D, Zhang H, Peng W (2012) TEOS/HDTMS inorganic–organic hybrid compound used for stone protection. J Sol Gel Sci Technol 61:429–435CrossRefGoogle Scholar
  22. 22.
    Berns RS (2000) Billmeyer and saltzman’s principles of color technology. Wiley-Interscience, New YorkGoogle Scholar
  23. 23.
    Yang H, Li C, Gu H, Fang T (2001) Rheological behavior of titanium dioxide suspensions. J Colloid Interf Sci 236:96–103CrossRefGoogle Scholar
  24. 24.
    Zhang X, Xia B, Ye H, Zhang Y, Xiao B, Yan L, Lv H, Jiang B (2012) One-step sol–gel preparation of PDMS–silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings. J Mate Chem 22:13132–13140CrossRefGoogle Scholar
  25. 25.
    Cardiano P, Ponterio RC, Sergi S, Lo Schiavo S, Piraino P (2005) Epoxy-silica polymers as stone conservation materials. Polymer 24:1857–1864CrossRefGoogle Scholar
  26. 26.
    Toniolo L, Poli T, Castelvetro V (2002) Tailoring new fluorinated acrylic copolymers as protective coatings for marble. J Cult Herit 3:309–316CrossRefGoogle Scholar
  27. 27.
    Coulson SR, Woodward I, Badyal JPS, Brewer SA, Willis CJ (2000) Super-repellent composite fluoropolymer surfaces. J Phys Chem B 104:8836–8840CrossRefGoogle Scholar
  28. 28.
    Zielecka M, Bujnowska E (2005) Silicone-containing polymer matrices as protective coatings properties and applications. Prog Org Coat 55:160–167CrossRefGoogle Scholar
  29. 29.
    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432CrossRefGoogle Scholar
  30. 30.
    Fujishima A, Rao TN, Tryk DA (2000) TiO2 photocatalysts and diamond electrodes. Electrochim Acta 45:4683–4690CrossRefGoogle Scholar
  31. 31.
    Quagliarinia E, Bondiolib F, Goffredoa GB, Licciulli A, Munafò P (2013) Self-cleaning materials on architectural heritage:compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. J Cult Herit 14:1–7CrossRefGoogle Scholar
  32. 32.
    Chou TP, Zhang Q, Russo B, Fryxell GE, Cao G (2007) Titania particle size effect on the overall performance of dye-sensitized solar cells. J Phys Chem C 111:6296–6302CrossRefGoogle Scholar
  33. 33.
    Carneiro JT, Almeida AR, Moulijn JA, Mul G (2010) Cyclohexane selective photocatalytic oxidation by anatase TiO2:influence of particle size and crystallinity. Phys Chem Chem Phys 12:2744–2750CrossRefGoogle Scholar
  34. 34.
    Thornbush MJ (2007) Simulation of the dissolution of weathered versus unweathered limestone in carbonic acid solutions of varying strength. Earth Surf Proc Land 32:841–852CrossRefGoogle Scholar

For further details log on website :
http://link.springer.com/article/10.1007/s10924-016-0903-3

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...