Blog List

Friday 13 October 2017

Virtual reconstruction of endocast anatomy in early ray-finned fishes (Osteichthyes, Actinopterygii)

Author
Accepted: November 11, 2013

Author Affiliation

Sam Giles
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK, < sam.giles@earth.ox.ac.uk> and < mattf@earth.ox.ac.uk>
Matt Friedman
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK, < sam.giles@earth.ox.ac.uk> and < mattf@earth.ox.ac.uk>

Abstract

Cranial endocasts, infillings of the skeletal void that once contained the brain and associated soft tissues, represent detailed anatomical structures that have long been the focus of paleontological investigation. We applied computed tomographics (CTs) in order to generate endocast models for the Paleozoic actinopterygian fishes Mimipiscis and Kentuckia, which serve as key representatives of anatomically primitive, early ray fins in analyses of early vertebrate relationships. The resultant endocranial models generally corroborate existing accounts of endocranial anatomy in these genera, drawn from descriptions of the inner face of the brain cavity. However, the endocasts also provide new anatomical details, the most significant of which are the presence in Mimipiscis of widely divergent olfactory tracts, small optic lobes, and anterior and posterior semicircular canals that extend dorsal to the roof of the endocranial chamber. By contrast, Kentuckia possesses a single, straight olfactory tract, wide optic lobes, and anterior and posterior semicircular canals that do not reach the dorsal surface of the endocast. In each of these features, Kentuckia resembles stratigraphically younger actinopterygians such as Lawrenciella and Kansasiella, whereas Mimipiscis more closely resembles sarcopterygians and other outgroups. This character distribution provides further support for earlier phylogenetic interpretations of these genera.

REFERENCES

Agassiz, L. 18381844Recherches Sur Les Poissons Fossiles. Neuchatel 5 vols, 1420 p. Google Scholar
Andrews, S. M., J. Long, and P. Ahlberg. 2006The structure of the sarcopterygian Onychodus jandemarrai n. sp. from Gogo, Western Australia: with a functional interpretation of the skeleton. Transactions of the Royal Society of Edinburgh Earth Sciences, 96:197307CrossrefGoogle Scholar
Arratia, G. and R. Cloutier. 2004A new cheirolepidid fish from the Middle–Upper Devonian of Red Hill, Nevada, U.S.A., p. 583598In G. Arratia, M. V. Wilson, and R. Cloutier (eds.). Recent Advances in the Origin and Early Radiation of Vertebrates. Verlag, Dr. Friedrich PfeilMunichGoogle Scholar
Balfour, F. M. and W. N. Parker. 1882On the structure and development of Lepidosteus. Philosophical Transactions of the Royal Society of London, 173:359442CrossrefGoogle Scholar
Basden, A. M. and G. C. Young. 2001A primitive actinopterygian neurocranium from the Early Devonian of Southeastern Australia. Journal of Vertebrate Paleontology, 21:754766BioOneGoogle Scholar
Basden, A. M., G. C. Young, M. I. Coates, and A. Ritchie. 2000The most primitive osteichthyan braincase? Nature, 403:185188CrossrefPubMedGoogle Scholar
Bjerring, H. C. 1971The nerve supply to the second metamere basicranial muscle in osteolepiform vertebrates, with some remarks on the basic composition of the endocranium. Acta Zoologica, 52:189225CrossrefGoogle Scholar
Bjerring, H. C. 1991Two intracranial ligaments supporting the brain of the brachiopterygian fish Polypterus senegalus. Acta Zoologica, 72:4147CrossrefGoogle Scholar
Brazeau, M. D. 2009The braincase and jaws of a Devonian “acanthodian” and modern gnathostome origins. Nature, 457:305308CrossrefPubMedGoogle Scholar
Campbell, K. S. W. and R. E. Barwick. 1982The neurocranium of the primitive dipnoan Dipnorhynchus sussmilchi (Etheridge). Journal of Vertebrate Paleontology, 2:286327CrossrefGoogle Scholar
Campbell, K. and R. E. Barwick. 2000The braincase, mandible and dental structures of the Early Devonian lungfish Dipnorhynchus kurikae from Wee Jasper, New South Wales. Records of the Australian Museum, 52:103128CrossrefGoogle Scholar
Casier, E. 1954Contributions à l'étude des poissons fossiles de la Belgique. XI. Note additionelle relative à “Stereolepis” (=Osorioichthys nov. num) et à l'origine de l'interoperculaire. Bulletin de l'Institut royal des Sciences naturelles de Belgique, 30:112Google Scholar
Chang, M. 1982The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, South-Western China. Unpublished Ph.D dissertation, Department of Geology, University of Stockholm, 113 p. Google Scholar
Chang, M. and X. B. Yu. 1981A new crossopterygian, Youngolepis praecursor, gen. et sp. nov., from Lower Devonian of E. Yunnan, China. Scientia Sinica, 24:8997Google Scholar
Choo, B. 2011Revision of the actinopterygian genus Mimipiscis (=Mimia) from the Upper Devonian Gogo Formation of Western Australia and the interrelationships of the early Actinopterygii. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 102:77104CrossrefGoogle Scholar
Cignoni, P., M. Corsini, and G. Ranzuglia. 2008Meshlab: An open-source 3D mesh processing system. Ercim News, 63:4546Google Scholar
Clément, G. and P. E. Ahlberg 2010The endocranial anatomy of the early sarcopterygian Powichthys from Spitsbergen, based on CT scanning, p. 365379In D. K. Elliot, J. G. Maisey, X. Yu, and D. Miao (eds.), Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. Verlag, Dr. Friedrich PfeilMunichGoogle Scholar
Coates, M. I. 1998Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania. Zoological Journal of the Linnean Society, 122:2759CrossrefGoogle Scholar
Coates, M. I. 1999Endocranial preservation of a Carboniferous actinopterygian from Lancashire, U.K., and the interrelationships of primitive actinopterygians. Philosophical Transactions of the Royal Society B, Biological Sciences, 354:435462CrossrefGoogle Scholar
Coates, M. I. and M. Friedman. 2010Litoptychus bryanti and characteristics of stem tetrapod neurocrania, p. 389416In D. K. Elliot, J. G. Maisey, X. Yu, and D. Miao (eds.), Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. Verlag, Dr. Friedrich PfeilMunichGoogle Scholar
Cope, E. D. 1880Second contribution to the history of the vertebrata of the Permian Formation of Texas. Proceedings of the American Philosophical Society, 19:3858Google Scholar
Davis, S. P., J. A. Finarelli, and M. I. Coates. 2012Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature, 486:247250CrossrefPubMedGoogle Scholar
De Burlet, H. M. 1934 Vergleichende Anatomie des stato-akustischen Organs. Handbuch der vergleichenden Anatomie der Wirbeltiere. Berlin, Urban and Schwarzenberg, 2:12931432Google Scholar
Dunkle, D. H. 1964Preliminary description of a paleoniscoid fish from the Upper Devonian of Ohio. Cleveland Museum of Natural History, 3:116Google Scholar
Eastman, C. R. 1908Devonian fishes of Iowa, Iowa Geological Survey, 18:29386Google Scholar
Edinger, T. 1929Die Fossilen Gehirne. Ergebnisse der Anatome und Entwicklungsgeschichte, 28:1249Google Scholar
Evans, W. H. 1953A catalogue of the American Hesperiidae indicating the classification and nomenclature adopted in the British Museum. Part III. Pyrginae Section 2British Museum (Natural History)LondonGoogle Scholar
Friedman, M. 2007Styloichthys as the oldest coelacanth: Implications for early osteichthyan interrelationships. Journal of Systematic Palaeontology, 5:289343CrossrefGoogle Scholar
Friedman, M. and H. Blom. 2006A new actinopterygian from the Famennian of East Greenland and the interrelationships of Devonian ray-finned fishes. Journal of Paleontology, 80:11861204BioOneGoogle Scholar
Friedman, M., M. Coates, and P. Anderson. 2007First discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and limbs. Evolution and Development, 9:329337CrossrefPubMedGoogle Scholar
Friedman, M. and M. D. Brazeau. 2010A reappraisal of the origin and basal radiation of the Osteichthyes. Journal of Vertebrate Paleontology, 30:3656BioOneGoogle Scholar
Gai, Z., P. C. J. Donoghue, M. Zhu, and P. Janvier. 2011Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature, 476:324327CrossrefPubMedGoogle Scholar
Gardiner, B. G. 1984The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum (Natural History), 37, 428 p. Google Scholar
Gardiner, B. G. and A. W. H. Bartram. 1977The homologies of ventral cranial fissures in osteichthyans, p. 227245In S. M. Andrews, R. S. Miles, and A. D. Walker (eds.) Problems in Vertebrate Evolution. Academic PressLondonGoogle Scholar
Gardiner, B. G. and B. Schaeffer. 1989Interrelationships of lower actinopterygian fishes. Zoological Journal of the Linnean Society, 97:135187CrossrefGoogle Scholar
Gardiner, B., B. Schaeffer, and J. A. Masserie. 2005A review of the lower actinopterygian phylogeny. Zoological Journal of the Linnean Society, 144:511525CrossrefGoogle Scholar
Garwood, R. and J. Dunlop. The walking dead: Blender as a tool for palaeontologists. Journal of Paleontology, 88:735746BioOneGoogle Scholar
Gauldie, R. W., K. Mulligan, and R. K. Thompson. 1987The otoliths of a chimaera, the New Zealand elephant fish Callorhynchus milii. New Zealand Journal of Marine and Freshwater Research, 21:275280CrossrefGoogle Scholar
Goatley, C. H. R., D. R. Bellwood, and O. Bellwood. 2010Fishes on coral reefs: Changing roles over the past 240 million years. Paleobiology, 36:415427BioOneGoogle Scholar
Gómez, A., E. Durán, F. M. Ocaña, and F. Jiménez-Moya. 2009Observations on the brain development of the sturgeon Acipenser naccarii, p. 155174In R. Carmona, A. Domezain, M. G. Gallego, J. A. Hernando, R. Rodríguez, and M. Ruiz-Rejón (eds.), Biology, Conservation and Sustainable Development of Sturgeons. SpringerNetherlandsGoogle Scholar
Goujet, D. 1984Les poissons placodermes du SpitsbergCahiers du Paléontologie C. N. R. S., Paris, 284 p. Google Scholar
Hamel, M.-H. 2005A new lower actinopterygian from the Early Permian of the Paraná Basin, Brazil. Journal of Vertebrate Paleontology, 25:1926BioOneGoogle Scholar
Hamel, M-H. and C. Poplin. 2008The braincase anatomy of Lawrenciella schaefferi, actinopterygian from the Upper Carboniferous of Kansas (U.S.A.). Journal of Vertebrate Paleontology, 28:9891006BioOneGoogle Scholar
Jaekel, O. 1927Der Kopf der Wirbeltiere. Bergmann, 1927Google Scholar
Jarvik, E. 1954On the visceral skeleton in Eusthenopteron with a discussion of the parasphenoid and palatoquadrate in fishes. Kungliga Svenska Vetenskapsakademiens Handlingar, 5:1104Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of Vertebrates. Academic PressLondonGoogle Scholar
Jerison, H. 1973. Evolution of the Brain and Intelligence. Academic PressNew YorkGoogle Scholar
Kruska, D. C. T. 1988The brain of the basking shark (Cetorhinus maximus). Brain, Behavior and Evolution, 32:353363CrossrefPubMedGoogle Scholar
Lacépède, B. G. 1798–1903. Histoire naturelle des poissons, 5 vols. Chez PlassanParisGoogle Scholar
Linneaus, C. 1758Systema naturae, Editio X. Holmiae. v. 1, 824 p. Google Scholar
Linneaus, C. 1766Systema naturae sive regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentia Salvii, Holmiae, 12th ed., vol. 1, pt. 1., 532 p. Google Scholar
Long, J., B. Choo, and G. C. Young. 2008A new basal actinopterygian fish from the Middle Devonian Aztec Siltstone of Antarctica. Antarctic Science, 20:393412CrossrefGoogle Scholar
Long, J. and K. Trinajstic. 2010The Late Devonian Gogo Formation Lägerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annual Review of Earth and Planetary Sciences, 38:255279CrossrefGoogle Scholar
Lovell, J. M., M. M. Findlay, R. M. Moate, J. R. Nedwell, and M. A. Pegg. 2005The inner ear morphology and hearing abilities of the Paddlefish (Polyodon spathula) and the Lake Sturgeon (Acipenser fulvescens). Comparative Biochemistry and Physiology Part A, Molecular and Integrative Physiology, 142:286296CrossrefPubMedGoogle Scholar
Maisey, J. G. 2005Braincase of the Upper Devonian shark Cladodoides wildungensis (Chondrichthyes, Elasmobranchii), with observations on the braincase in early Chondrichthyans. Bulletin of the American Museum of Natural History, p. 1103BioOneGoogle Scholar
Maisey, J. G. 2007The braincase in Paleozoic symmoriiform and cladoselachian sharks. Bulletin of the American Museum of Natural History, p. 1122BioOneGoogle Scholar
Marsh, O. C. 1874Small size of the brain in Tertiary mammals. American Journal of Science, 8:6667Google Scholar
Mathiesen, C. and A. N. Popper. 1987The ultrastructure and innervation of the ear of the gar, Lepisosteus osseus. Journal of Morphology, 194:129142CrossrefPubMedGoogle Scholar
Millot, J. and J. Anthony. 1965Anatomy de Latimeria chalumnae. Vol. II. Système nerveux et organes de sens. Éditions du Centre National de la Recherche ScientifiqueParis. 131 p. Google Scholar
Moodie, R. L. 1915A new fish brain from the Coal Measures of Kansas, with a review of other fossil brains. The Journal of Comparative Neurology, 25:135181CrossrefGoogle Scholar
Newberry, J. S. 1857New fossil fishes from the Devonian rocks of Ohio. American Journal of Science, 24:147149Google Scholar
Nielsen, E. 1942Studies on Triassic Fishes from East Greenland I. Glaucolepis and Boreosomus. Meddelelser om Grønland, 146:1309Google Scholar
Nieuwenhuys, R. 1982An overview of the organization of the brain of actinopterygian fishes. American Zoologist, 22:287310CrossrefGoogle Scholar
Nieuwenhuys, R., J. P. M. Kremers, and C. van Huijzen. 1977The brain of the crossopterygian fish Latimeria chalumnae: a survey of its gross structure. Anatomy and Embryology, 151:157169CrossrefPubMedGoogle Scholar
Northcutt, R. G., T. J. Neary, and D. G. Senn. 1978Observations on the brain of the coelacanth Latimeria chalumnae: External anatomy and quantitative analysis. Journal of Morphology, 155:181192CrossrefGoogle Scholar
Owen, R. 1841Report on British Fossil Reptiles, Pt II. Report of the British Association for the Advancement of Science, 11:60204Google Scholar
Owen, R. 1875On fossil evidences of a sirenian mammal (Eotherium aegypiacum, Owen), from the Nummulitic Eocene of the Mokattam Cliffs, near Cairo. Quarterly Journal of the Geological Society of London, 31:100104CrossrefGoogle Scholar
Pearson, D. M. and T. S. Westoll. 1979The Devonian actinopterygian Cheirolepis Agassiz. Transactions of the Royal Society of Edinburgh, 70:337399CrossrefGoogle Scholar
Poplin, C. M. 1974Étude de quelques paléoniscidés pennsylvaniens du KansasCahiers du Paléontologie C. N. R. S., Paris, 151 p. Google Scholar
Poplin, C. M. 1984Lawrenciella schaefferi n. g., n. sp. (Pisces: Actinopterygii) and the use of endocranial characters in the classification of the palaeonisciformes. Journal of Vertebrate Paleontology, 4:413421CrossrefGoogle Scholar
Poplin, C. M. and A. J. de Ricqlés. 1970A technique of serial sectioning for the study of undecalcified fossils. Curator, 13:720CrossrefGoogle Scholar
Popper, A. N. 1978Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus). The Journal of Comparative Neurology, 181:117128CrossrefPubMedGoogle Scholar
Pradel, A. 2010Skull and brain anatomy of Late Carboniferous Sibyrhynchidae (Chondrichthyes, Iniopterygia) from Kansas and Oklahoma (U.S.A.). Geodiversitas, 32:595661LinkGoogle Scholar
Pradel, A., M. Langer, J. G. Maisey, D. Geffard-Kuriyama, P. Cloetens, P. Janvier, and P. Tafforeau. 2009Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proceedings of the National Academy of Sciences of the United States of America, 106:52245228CrossrefPubMedGoogle Scholar
Rayner, D. H. 1951III.—On the cranial structure of an early palæoniscid, Kentuckia, gen. nov. Transactions of the Royal Society of Edinburgh, 62:5383CrossrefGoogle Scholar
Romer, A. S. 1937The braincase of the Carboniferous crossopterygian Megalichthys nitidus. Bulletin of the Museum of Comparative Zoology, 73 p. Google Scholar
Rupp, B. and G. Northcutt. 1998The diencephalon and pretectum of the white sturgeon (Acipenser transmontanus): A cytoarchitectonic study. Brain, Behavior and Evolution, 51:239262CrossrefPubMedGoogle Scholar
Säve-Söderbergh, G. 1952On the skull of Chirodipterus wildungensis Gross, an Upper Devonian dipnoan from Wildungen. Kungliga Svenska Vetenskapsakademiens Handlingar, 4:128Google Scholar
Schaeffer, B. 1981The xenacanth shark neurocranium, with comments on elasmobranch monophyly. Bulletin of the American Museum of Natural History, 169:166Google Scholar
Schaeffer, B. and W. W. Dalquest. 1978A palaeonisciform braincase from the Permian of Texas, with comments on cranial fissures and the posterior myodome. Novitates, 2658:115Google Scholar
Schultze, H.-P. 1973Crossopterygier mit heterozerker Schwanzflosse aus dem Oberdevon Kanadas, nebst einer Beschreibung von Onychodontida-Resten aus dem Mitteldevon Spaniens und aus dem Karbon der U.S.A. Palaeontographica Abteilung A, 143:188208Google Scholar
Senn, D. G. 1976Brain structure in Calamoichthys calabaricus Smith 1865 (Polypteridae, Brachiopterygii). Acta Zoologica, 57:121128CrossrefGoogle Scholar
Smith, J. 1939A surviving fish of the order Actinistia. Transactions of the Royal Society of South Africa, 27:4750CrossrefGoogle Scholar
Sollas, W. J. 1904A method for the investigation of fossils by serial sections. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 196:259265Google Scholar
Stensiö, E. A. 1921. Triassic Fishes from Spitzbergen, Vol. 1. A. HolshausenViennaGoogle Scholar
Stensiö, E. A. 1922Notes on certain crossopterygians. Proceedings of the Zoological Society of London, 92:12411271CrossrefGoogle Scholar
Stensiö, E. A. 1927The Downtonian and Devonian vertebrates of Spitsbergen. 1. Family Cephalaspidae. Skrifter om Svalbard og Ishavet, 12:1391Google Scholar
Stensiö, E. A. 1963a. Anatomical studies on the arthrodiran head. Kungliga Svenska Vetenskapsakademiens Handlingar, 9:1419Google Scholar
Stensiö, E. A. 1963b. The brain and the cranial nerves in fossil, lower craniate vertebrates. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, Mat.-Naturv. Klasse. Ny serie 13Oslo, NorwayGoogle Scholar
Sutton, M. D., R. J. Garwood, D. J. Siveter, and D. J. Siveter. 2012SPIERS and VAXML: A software toolkit for tomographic visualisation and a format for virtual specimen interchange. Palaeontologia Electronica, 15, 15 p. palaeo-electronica.org/content/94-issue-2-2012-technical-articles/226-ct-toolkitsGoogle Scholar
Taverne, L. 1997Osorioichthys marginis, “paléonisciforme” du Famennien de Belgique, et la phylogénie des Actinoptérygiens dévoniens (Pisces). Bulletin de l'Institut royal des Sciences naturelles de Belgique, 67:5778Google Scholar
Thomson, K. S. and K. S. W. Campbell. 1971The structure and relationships of the primitive Devonian lungfish—Dipnorhynchus sussmilchi (Etheridge). Bulletin of the Peabody Museum of Natural History, Yale University, 38, 190 p. Google Scholar
Traquair, R. H. 1890LXI.—Observations on some fossil fishes from the lower Carboniferous Rocks of Eskdale, Dumfriesshire. Annals and Magazine of Natural History, 6:491494CrossrefGoogle Scholar
Trinajstic, K., C. Marshall, J. Long, and K. Bifield. 2007Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biology Letters, 3:197200CrossrefPubMedGoogle Scholar
Walsh, S. A. and M. A. Knoll. 2011Directions in palaeoneurology. Special Papers in Palaeontology, 86:263279Google Scholar
White, E. I. 1933XIV.—New Trassic Palæoniscids from Madagascar. Annals and Magazine of of Natural History, 11:118128CrossrefGoogle Scholar
Whiteaves, J. F. 1881On some remarkable fossil fishes from the Devonian rocks of Scaumenac Bay, in the Province of Quebec. Annals and Magazine of Natural History, 8:159162CrossrefGoogle Scholar
Woodward, A. S. 18911. - The Devonian Fish Fauna of Spitzbergen. Annals and Magazine of Natural History, 8:115CrossrefGoogle Scholar
Work, D. M. and C. E. Mason. 2003Mississippian (middle Osagean) ammonoids from the Nada Member of the Borden Formation, Kentucky. Journal of Paleontology, 77:593596BioOneGoogle Scholar
Zhu, M., X. Yu, and P. Janvier. 1999A primitive fossil fish sheds light on the origin of bony fishes. Nature, 397:607610CrossrefGoogle Scholar
Zhu, M., X. Yu, W. Wang, W. Zhao, and L. Jia. 2006A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature, 441:7780CrossrefPubMedGoogle Scholar
Zhu, M., W. Wang, and X. Yu. 2010Meemannia eos, a basal sarcopterygian fish from the Lower Devonian of China - expanded description and significance, p. 199214In D. K. Elliot, J. G. Maisey, X. Yu, and D. Miao (eds.), Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. Verlag, Dr. Friedrich PfeilMunichGoogle Scholar
Zhu, M., W. Zhao, L. Jia, J. Lu, T. Qiao, and Q. Qu. 2009The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature, 458:469474CrossrefPubMedGoogle Scholar
Zwehl, V. 1961l: Über die Blutgewissversorgnung des Gehirns bei einigen Teleostiern. Zoologische Jahrbuch. Abteilung Anatomie, 79:371438Google Scholar

Cited by

Alan PradelJohn G. MaiseyRoyal H. Mapes and Isabelle Kruta. (2016) First evidence of an intercalar bone in the braincase of “palaeonisciform” actinopterygians, with a virtual reconstruction of a new braincase of Lawrenciella Poplin, 1984 from the Carboniferous of Oklahoma. Geodiversitas 38:4, 489-504.
Online publication date: 30-Dec-2016.
Imran A. Rahman and Selena Y. Smith. (2014) Virtual paleontology: computer-aided analysis of fossil form and function. Journal of Paleontology 88:4, 633-635.
Online publication date: 9-Jul-2014.
For further details log on website :
http://www.bioone.org/doi/abs/10.1666/13-094

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...