Blog List

Tuesday, 27 March 2018

Comparative in situ biodegradation studies of polyhydroxybutyrate film composites

Author
  1. 1.Department of Microbiology, College of Basic Sciences and HumanitiesG. B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.Department of Chemistry, College of Basic Sciences and HumanitiesG. B. Pant University of Agriculture and TechnologyPantnagarIndia

Original Article

Abstract

Application of polyhydroxybutyrate (PHB) to plastic industry has expanded over the last decades due to its attracting features over petro-based plastic, and therefore, its waste accumulation in nature is inevitable. In the present study, a total of four bacterial strains, viz., MK3, PN12, PW1, and Lna3, were formulated into a consortium and subsequently used as biological tool for degradation of biopolymers. The consortium was tested through λ max shifts under in vitro conditions for utilization of PHB as sole carbon source. Talc-based bioformulations of consortium were used for the degradation of PHB film composites under in situ conditions. After 9 months of incubation, the recovered samples were monitored through Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), respectively. Analytical data, viz., changes in λ max shifts (212–219 nm), FT-IR spectra, and SEM micrographs, revealed the biodegradation potential of developed consortium against PHB film composites, i.e., higher degradation of copolymer films was found over blend films. The used consortium had enhanced the rate of natural degradation and can be further used as a natural tool to maintain and restore global environmental safety.

References

  1. Aburas MMA (2016) Degradation of poly (3-hydroxybuthyrate) using Aspergillus oryzaeobtained from uncultivated soil. Life Sci J 13:51–56. doi: 10.7537/marslsj13031607Google Scholar
  2. Anwar MS, Kapri A, Chaudhry V, Mishra A, Ansari MW, Shouche Y, Nautiyal CS, Zaidi MGH, Goel R (2016) Response of indigenously developed bacterial consortia in progressive degradation of polyvinyl chloride. Protoplasma 253:1023–1032. doi: 10.1007/s00709-015-0855-9CrossRefGoogle Scholar
  3. Ardakani SS, Heydari A, Tayebi L, Cheraghi M (2011) Evolution of efficacy of new bioformulations on promotion of cotton seedlings growth characteristics. In: 2nd International conference on environmental science and technology. IACSIT press, Singapore, vol. 6, pp 361–364Google Scholar
  4. Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jiménez A, Yoon K, Ahn J, Kang S, Kenny JM (2015) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. eXPRESS Polym Lett 9:583–596. doi: 10.3144/expresspolymlett.2015.55CrossRefGoogle Scholar
  5. Arora NK, Khare E, Naraian R, Maheshwari DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonads strains and their impact on productivity of Trifolium repense. Curr Sci 95:90–94Google Scholar
  6. Arrieta MP, Lopez J, Rayon E, Jimenez A (2014) Disintegrability under composting conditions of plasticized PLA–PHB blends. Polym Degrad Stab 108:307–318. doi: 10.1016/j.polymdegradstab.2014.01.034CrossRefGoogle Scholar
  7. Barham PJ, Barker P, Organ SJ (2006) Physical properties of poly(hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS Microbiol Rev 9:289–298. doi: 10.1111/j.1574-6968.1992.tb05850.xGoogle Scholar
  8. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808. doi: 10.3144/expresspolymlett.2014.82CrossRefGoogle Scholar
  9. Darani KK, Bucci DZ (2015) Application of poly(hydroxyalkanoate) in food packaging: improvements by nanotechnology. Chem Biochem Eng Q 29:275–285. doi: 10.15255/CABEQ.2014.2260CrossRefGoogle Scholar
  10. Garcia-Hidalgo J, Hormigo D, Arroyo M, Mata IDL (2013) Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions. PLoS One 8:e71699. doi: 10.1371/journal.pone.0071699CrossRefGoogle Scholar
  11. Goel R, Sah A, Kapri A, Negi H (2011) Process for the preparation of talc based formulation of LDPE biodegrading consortia for field application. DBT, 2010, India 213/DEL/2011 (Patent)Google Scholar
  12. Harmaen AS, Khalina A, Ali HM, Azowa IN (2016) Thermal, morphological, and biodegradability properties of bioplastic fertilizer composites made of oil palm biomass, fertilizer, and poly(hydroxybutyrate-co-valerate). Int J Polym Sci 2016:1–8. doi: 10.1155/2016/3230109CrossRefGoogle Scholar
  13. Hawas JMEM, El-Banna TES, Belal EBA, El-Aziz AA (2016) Production of bioplastic from some selected Bacterial strains. Int J Curr Microbiol Appl Sci 5:10–22. doi: 10.20546/ijcmas.2016.501.002CrossRefGoogle Scholar
  14. Jedra F (2014) Polyhydroxyalkanoates: various properties, various applications. KCPK, ArnhemGoogle Scholar
  15. Kai D, Loh XJ (2014) Polyhydroxyalkanoates: chemical modifications toward biomedical applications. ACS Sustain Chem Eng 2:106–119. doi: 10.1021/sc400340pCrossRefGoogle Scholar
  16. Kapri A, Zaidi MGH, Satlewal A, Goel R (2010) SPION-accelerated biodegradation of low-density polyethylene by indigenous microbial consortium. Int Biodeterior Biodegrad 64:238–244. doi: 10.1016/j.ibiod.2010.02.002CrossRefGoogle Scholar
  17. Loh XJ, Zhang ZX, Wu YL, Lee TS, Li J (2009) Synthesis of novel biodegradable thermoresponsive triblock copolymers based on poly[(R)-3-hydroxybutyrate] and poly(N-isopropylacrylamide) and their formation of thermoresponsive micelles. Macromolecules 42:194–202. doi: 10.1021/ma8019865CrossRefGoogle Scholar
  18. Lopez JA, Naranjo JM, Higuita JC, Cubitto JC, Cardona CA, Villar MA (2012) Biosynthesis of PHB from a new isolated Bacillus megaterium strain: outlook on future developments with endospore forming bacteria. Biotechnol Bioprocess Eng 17:250–258. doi: 10.1007/s12257-011-0448-1CrossRefGoogle Scholar
  19. Mousavioun P, George GA, Doherty WOS (2012) Environmental degradation of lignin/poly (hydroxybutyrate) blends. Polym Degrad Stab 97:1114–1122. doi: 10.1016/j.polymdegradstab.2012.04.004CrossRefGoogle Scholar
  20. Negi H, Kapri A, Zaidi MGH, Satlewal A, Goel R (2009) Comparative in vitro biodegradation studies of epoxy and its silicone blend by selected microbial consortia. Int Biodeterior Biodegrad 63:553–558. doi: 10.1016/j.ibiod.2009.03.001CrossRefGoogle Scholar
  21. Oda Y, Osaka H, Urakami T, Tonomura K (1997) Purification and properties of poly(3-hydroxybutyrate) depolymerase from the fungus Paecilomyces lilacinus D218. Curr Microbiol 34:230–232. doi: 10.1007/s002849900174CrossRefGoogle Scholar
  22. Orts WJ, Nobes GA, Kawada J, Nguyen S, Yu GE, Ravenelle F (2008) Poly(hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can J Chem 39:628–640. doi: 10.1002/chin.200844261CrossRefGoogle Scholar
  23. Raghuwanshi S, Negi H, Aggarwal T, Zaidi MGH, Goel R (2015) Comparative biodegradation studies of cow dung modified epoxy with epoxy using an indigenously developed bacterial consortium. Afr J Microbiol Res 9:1558–1572. doi: 10.5897/AJMR2015.7462CrossRefGoogle Scholar
  24. Raghuwanshi S, Agarwal T, Yadav A, Zaidi MGH, Shouche Y, Goel R (2016) Selection of poly(R)-3-hydroxybutyric acid utilising bacteria by enrichment, optimisation and compatibility testing for consortia development. Chem Ecol 32:583–587. doi: 10.1080/02757540.2016.1162297CrossRefGoogle Scholar
  25. Santos GA, Dantas AC, Oliveira LM, Ferraz AV, Acchar W, Olivier NC (2015) Production of hydroxyapatite/polyhydroxybutyrate based composites for biomaterials applications. Mater Sci Forum 820:309–314. doi: 10.4028/www.scientific.net/MSF.820.309CrossRefGoogle Scholar
  26. Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem 35:573–579. doi: 10.1016/S0032-9592(99)00107-7CrossRefGoogle Scholar
  27. Schöber U, Thiel C, Jendrossek D (2000) Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoignei. Appl Environ Microbiol 66:1385–1392. doi: 10.1128/AEM.66.4.1385-1392.2000CrossRefGoogle Scholar
  28. Shah AA, Hasan F, Hameed A, Ahmed S (2007) Isolation and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) degrading bacteria and purification of PHBV depolymerase from newly isolated Bacillus sp. AF3. Int Biodeterior Biodegrad 60:109–115. doi: 10.1016/j.ibiod.2007.01.004CrossRefGoogle Scholar
  29. Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corn rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30:807–813. doi: 10.1016/j.cropro.2011.02.033CrossRefGoogle Scholar
  30. Sinha K, Rathore P (2015) Study of polyhydroxybutyrate producing Bacillus sp. isolated from soil. Res J Recent Sci 4:61–69CrossRefGoogle Scholar
  31. Soni R, Kapri A, Zaidi MGH (2009) Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. J Polym Environ 17:233–239. doi: 10.1007/s10924-009-0143-xCrossRefGoogle Scholar
  32. Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011Google Scholar
  33. Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xuan BB, Dung VV (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95:2350–2359. doi: 10.1016/j.polymdegradstab.2010.08.023CrossRefGoogle Scholar
  34. Volova TG, Boyandin AN, Prudnikova SV (2015) Biodegradation of polyhydroxyalkanoates in natural soils. J Sib Fed Univ Biol 8:152–167CrossRefGoogle Scholar
  35. Yoshie N, Oike Y, Kasuya K, Doi Y, Inoue Y (2002) Change of surface structure of poly(3-hydroxybutyrate) film upon enzymatic hydrolysis by PHB depolymerase. Biomacromolecules 3:1320–1326. doi: 10.1021/bm020077aCrossRefGoogle Scholar
  36. Zafar U, Houlden A, Robson GD (2013) Fungal communities associated with the temperatures buried under compost at different biodegradation of polyester polyurethane. Appl Environ Microbiol 79:7313–7324. doi: 10.1128/AEM.02536-13CrossRefGoogle Scholar
  37. Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79. doi: 10.1002/adv.20235CrossRefGoogle Scholar
  38. Zhao K, Deng Y, Chen JC, Chen GQ (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24:1041–1045. doi: 10.1016/S0142-9612(02)00426-XCrossRefGoogle Scholar
For further details log on website :
https://link.springer.com/article/10.1007/s13205-017-0789-3

No comments:

Post a Comment

Mangrove Forest Management & Restoration

The Sabah Forestry Department has conserved most if not all Mangrove Forests under Class V for marine life conservation and as a natural me...