Blog List

Wednesday 20 July 2016

Estimating aboveground carbon using airborne LiDAR in Cambodian tropical seasonal forests for REDD+ implementation

Published Date
Volume 20, Issue 6, pp 484–492



Estimating aboveground carbon using airborne LiDAR in Cambodian tropical seasonal forests for REDD+ implementation

  • Tsuyoshi Kajisa
  • Nobuya Mizoue
  • Shigejiro Yoshida
  • Gen Takao
  • Yasumasa Hirata
  • Naoyuki Furuya
  • Takio Sano
  • Raul Ponce-Hernandez
  • Oumer S. Ahmed
  • Heng Sokh
  • Vuthy Ma
  • Eriko Ito
  • Jumpei Toriyama
  • Yukako Monda
Abstract

We developed an empirical model to estimate aboveground carbon density with variables derived from airborne Light Detection and Ranging (LiDAR) in tropical seasonal forests in Cambodia, and assessed the effects of LiDAR pulse density on the accurate estimation of aboveground carbon density. First, we tested the applicability of variables used for estimating aboveground carbon density with the original LiDAR pulse density data (26 pulse m−2). Aboveground carbon density was regressed against variables derived from airborne LiDAR. Three individual height variable models were developed along with a canopy density model, and three other models combined canopy height and canopy density variables. The influence of forest type on model accuracy was also assessed. Next, the relationship between pulse density and estimation accuracy was investigated using the best regression model. The accuracy of the models were compared based on seven LiDAR point densities consisting of 0.25, 1, 2, 3, 4, 5 and 10 pulse m−2. The best model was obtained using the single mean canopy height (MCH) model (R 2  = 0.92) with the original pulse density data. The relationship between MCH and aboveground carbon density was found to be consistent under different forest types. The differences between predicted and measured residual mean of squares of deviations were less than 1.5 Mg C ha−1 between each pulse density. We concluded that aboveground carbon density can be estimated using MCH derived from airborne LiDAR in tropical seasonal forests in Cambodia even with a low pulse density of 0.25 pulse m−2 without stratifying the study area based on forest type.

References

  1. Anderson J, Martin ME, Smith M-L, Dubayah RO, Hofton MA, Hyde P, Peterson BE, Blair JB, Knox RG (2006) The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire. Remote Sens Environ 105:248–261CrossRef
  2. Asner GP (2009) Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environ Res Lett 4:1748–9326CrossRef
  3. Asner GP, Hughes RF, Varga TA, Knapp DE, Kennedy-Bowdoin T (2009) Environmental and biotic controls over above-ground biomass throughout a tropical rain forest. Ecosystems 12:261–278CrossRef
  4. Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the amazon. Proc Natl Acad Sci USA 107:16738–16742PubMedCentralCrossRefPubMed
  5. Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina M, Hall JS, van Breugel M (2012a) A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168:1147–1160CrossRefPubMed
  6. Asner GP, Clark JK, Mascro J, Vaudry R, Chadwick KD, Vieilledent G, Rasamoelina M, Balaji A, Kennedy-Bowdoin T, Maatoug L, Colgan MS, Knapp DE, (2012b) Human and environmental controls over aboveground carbon storage in Madagascar. Carbon Balance Manag 7. doi:10.1186/1750-0680-7-2
  7. Asner GP, Clark JK, Mascaro J, Galindo García GA, Chadwick KD, Navarrete Encinales DA, Paez-Acosta G, Cabrera Montenegro E, Kennedy-Bowdoin T, Duque Á, Balaji A, Von Hildebrand P, Maatoug L, Phillips Bernal JF, Yepes Quintero AP, Knapp DE, García Dávila MC, Jacobson J, Ordóñez MF (2012c) High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 9:2683–2696CrossRef
  8. Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2:182–185CrossRef
  9. Böttcher H, Eisbrenner K, Fritz S, Kindermann G, Kraxner F, McCallum I, Obersteiner M (2009) An assessment of monitoring requirements and costs of reduced emissions from deforestation and degradation. Carbon Balance Manage 4:7. doi:10.1186/1750-0680-4-7CrossRef
  10. Brown S (1997) Estimating biomass and biomass change in tropical forests: a premier. Food and Agriculture Organization, Forestry Paper, Rome
  11. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866–18870PubMedCentralCrossRefPubMed
  12. Chen Q, Gong P, Baldocchi DD, Tian Y (2007) Estimating basal area and stem, volume for individual trees from LIDAR data. Photogramm Eng Rem S 73:1355–1365CrossRef
  13. DFW (1999) Forest cover assessment, Cambodia (in Khmer). Forestry administration of Camodia, Phnom Penh
  14. Donoghue DNM, Watt PJ, Cox NJ, Wilson J (2007) Remote sensing of species mixtures in conifer plantations using Lidar height and intensity data. Remote Sens Environ 110:509–522CrossRef
  15. Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince SD (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens Environ 79:305–319CrossRef
  16. Drake JB, Knox RG, Dubayah RO, Clark DB, ConditR Blair JB, Hofton M (2003) Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Global Ecol Biogeogr 12:147–159CrossRef
  17. Falkowski MJ, Evans JS, Martinuzzi S, Gessler PE, Hudak AT (2009) Characterizing forest succession with Lidar data: an evaluation for the Inland Northwest, USA. Remote Sens Environ 113:946–956CrossRef
  18. FAO (2010) Global forest resources assessment 2010: country report Cambodia. Food and Agriculture Organization of the United Nations, Rome
  19. Geist HJ, Lambin EF (2001) What drives tropical deforestation?: a meta-analysis of proximate and underlying causes of deforestation based on subnational case study evidence. LUSS Report Series No. 4
  20. Geist HJ, Lambin EF (2002) Proximate causes and underlying drving gorces of tropical deforestation. Bioscience 52:143–150CrossRef
  21. Gobakken T, Næsset E (2008) Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data. Can J For Res 38:1095–1109CrossRef
  22. González-Ferreiro E, Diéguez-Aranda U, Miranda D (2012) Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry 85:281–292CrossRef
  23. Holmgren J (2004) Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scand J For Res 19:543–553CrossRef
  24. Houghton RA (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sustain 4:597–603CrossRef
  25. Ioki K, Tsuyuki S, Hirata Y, Phua MH, Wong WVC, Ling ZY, Saito H, Takao G (2014) Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR. For Ecol Manage 328:335–341CrossRef
  26. Jakubowski MK, Guo Q, Kelly M (2013) Tradeoffs between lidar pulse density and forest measurement accuracy. Remote Sens Environ 130:245–253CrossRef
  27. Kronseder K, Ballhorn U, Böhmc V, Siegert F (2012) Above-ground biomass estimation across forest types at different degradation levels in central kalimantan using lidar data. Int J Appl Earth Obs Geoinf 18:37–48CrossRef
  28. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, Van Der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836CrossRef
  29. Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002) Lidar remote sensing of above-ground biomass in three biomes. Global Ecol Biogeogr 11:393–399CrossRef
  30. Lovell JL, Jupp DLB, Newnham GJ, Coops NC, Culvenor DS (2005) Simulation study for finding optimal lidar acquisition parameters for forest height retrieval. For Ecol Manag 214:398–412CrossRef
  31. Magnusson M, Fransson JES, Holmgren J (2007) Effects on estimation accuracy of forest variables using different pulse density of laser data. For Sci 53:619–626
  32. Maltamo M, Eerikainen K, Packalen P, Hyyppa J (2006) Estimation of stem volume using laser scanning-based canopy height metrics. Forestry 79:217–229CrossRef
  33. Mascaro J, Asner GP, Muller-Landau HC, Van Breugel M, Hall J, Dahlin K (2011) Controls over above-ground forest carbon density on barro colorado island, panama. Biogeosciences 8:1615–1629CrossRef
  34. Morsdorf F, Marell A, Koetz B, Cassagne N, Pimont F, Rigolot E (2010) Discrimination of vegetation strata in a multi-layered Mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens Environ 114:1403–1415CrossRef
  35. MRD/GTZ (1985) Regional framework plan Kampong Thom Province. Ministry of Rural Development, Phnom Penh
  36. Næsset E (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens Environ 61:241–253CrossRef
  37. Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99CrossRef
  38. Næsset E (2004) Estimation of above- and below- ground biomass in boreal forest ecosystems. In: Thies M, Kock B, Spiecker H, Weinacker H (eds) Laser-scanners for forest and landscape assessment. International society of photogrammetry and remote sensing. International archeves of photogrammetry, remote sensing and spatial information sciences, Freiburg, pp 145–148
  39. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904PubMedCentralCrossRefPubMed
  40. Tesfamichael SG, van Aardt JAN, Ahmed F (2010) Estimating plot-level tree height and volume of eucalyptus grandis plantations using small-footprint, discrete return lidar data. Prog Phys Geog 34:515–540CrossRef
  41. Treitz P, Lim K, Woods M, Pitt D, Nesbitt D, Etheridge D (2012) LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sens 4:830–848CrossRef
  42. Zhao KG, Popescu S (2009) Lidar-based mapping of leaf area index and its use for validating GLOBCARBON satellite LAI product in a temperate forest of the southern USA. Remote Sens Environ 113:1628–1645CrossRef

For further details log on website :
http://link.springer.com/article/10.1007/s10310-015-0504-3

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...