Blog List

Thursday 4 August 2016

Biomass allocation patterns and allometric relationships between components of the androdioecious Acer tegmentosum

Published Date
Volume 73, Issue 3, pp 729–739

Title 

Biomass allocation patterns and allometric relationships between components of the androdioecious Acer tegmentosum

  • Author 
  • Xinna Zhang
  • Chunyu Zhang

Abstract



Key message

We present comparisons about biomass allocation between males and hermaphrodites of androdioecious Acer tegmentosum Maxim.. Different biomass allocation patterns were found, and males were shown to have a larger investment into coarse roots and foliage.

Context

Sexual dimorphism in differences of reproductive costs between genders has been widely reported for trees, but we still know little about allometric relationships between tree components in both genders.

Aims

We present biomass allocation patterns and relationships between components of the androdioecious A. tegmentosum in a broad-leaved mixed forest in northeastern China. The objectives of this study were to examine how gender affects the biomass structure of androdioecious species and how the gender-related reproductive efforts affect the allometric relationships.

Methods

We harvested 31 hermaphrodite and 29 male A. tegmentosum trees and opted for diameter at breast height, tree height, and crown length as the independent variables and various biomass components as the dependent variables. Five types of function were used to model allometry equations.

Results

Biomass allocation between genders was different, and the best biomass model for each biomass component varies between genders. Males have a higher investment in foliage and coarse root biomass than hermaphrodites, and hermaphrodites invested more in reproduction than males.

Conclusion

Biomass equations are strongly gender-related. Males tended to invest a larger fraction of the vegetative biomass into leaves and coarse roots.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19:716–723. doi:10.1109/TAC.1974.1100705CrossRef
  2. Allen GA, Antos JA (1993) Sex ratio variation in the dioecious shrub Oemleria cerasiformis. Am Nat 141:537–553. doi:10.1086/285490CrossRefPubMed
  3. Anderson GJ, Symon DE (1989) Functional dioecy and andromonoecy in Solanum. Evolution 43:204–219. doi:10.2307/2409175CrossRef
  4. Antos JA, Allen GA (1999) Patterns of reproductive effort in male and female shrubs of Oemleria cerasiformis: a 6-year study. Ecology 87:77–84. doi:10.1046/j.1365-2745.1999.00331.xCrossRef
  5. Bazzaz FA, Carlson RW, Harper JL (1979) Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature 279:554–555. doi:10.1038/279554a0CrossRef
  6. Bazzaz FA, Ackerly DD, Reekie EG (2000) Reproductive allocation in plants. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities. CABI Publishing, New York, pp 1–29CrossRef
  7. Bond LB, Wang C, Gower ST (2002) Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can J Forest Res 32:1141–1450. doi:10.1139/x02-063
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York
  9. Catchpole WR, Wheeler CJ (1992) Estimating plant biomass: a review of techniques. Aus J Ecol 17:121–131. doi:10.1111/j.1442-9993.1992.tb00790.xCrossRef
  10. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.
  11. Cornelissen T, Stiling P (2005) Sex-biased herbivory: a meta-analysis of the effects of gender on plant-herbivore interactions. Oikos 111:488–500. doi:10.1111/j.1600-0706.2005.14075.xCrossRef
  12. Dantas V de L, Batalha MA, Pausas JG (2013) Fire drives functional thresholds on the savanna-forest transition. Ecology 94:2454–2463. doi:10.1890/12-1629.1CrossRef
  13. Fabiola RG, Bernardus HJ, De J, Pablo MZ, Fernando PP (2015) Database of 478 allometric equations to estimate biomass for Mexican trees and forests. Ann Forest Sci 72:835–864. doi:10.1007/s13595-015-0456-yCrossRef
  14. Fayolle A, Doucet JL, Gillet JF, Bourland N, Lejeune P (2013) Tree allometry in Central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecol Manag 305:29–37. doi:10.1016/j.foreco.2013.05.036CrossRef
  15. Galen C, Dawson TE, Stanton M (1993) Carpels as leaves: meeting the carbon cost of reproduction in an alpine buttercup. Oecologia 95:187–193. doi:10.1007/BF00323489CrossRef
  16. García MB, Antor RJ (1995) Sex ratio and sexual dimorphism in the dioecious Borderea pyrenaica (Dioscoreaceae). Oecologia 101:59–67. doi:10.1007/BF00328901CrossRef
  17. Harris MS, Pannell JR (2010) Canopy seed storage is associated with sexual dimorphism in the woody dioecious genus Leucadendron. J Ecol 98:509–515. doi:10.1111/j.1365-2745.2009.01623.xCrossRef
  18. Jadin I, Meyfroidt P, Lambin EF (2016) International trade, and land use intensification and spatial reorganization explain Costa Rica’s forest transition. Environ Res Lett 11:035005. doi:10.1007/s11027-015-9681-9CrossRef
  19. Khanam T, Rahman A, Mola-Yudego B, Pykäläinen J (2015) Identification of structural breaks in the forest product markets: how sensitive are to changes in the Nordic region? Mitig Adapt Strat Gl 1–15. doi: 10.1007/s11027-015-9681-9
  20. Lloyd DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat 113:67–79. doi:10.1086/283365CrossRef
  21. Meagher TR, Antonovics J (1982) The population biology of Chamaelirium luteum, a dioecious member of the lily family: life history studies. Ecology 63:1690–1700. doi:10.2307/1940111CrossRef
  22. Mesele N, Mike S, Markku K (2013) Allometric equations for biomass estimation of Enset (Ensete ventricosum) grown in indigenous agroforestry systems in the Rift Valley escarpment of southern-eastern Ethiopia. Agrofor Syst 87:571–581. doi:10.1007/s10457-012-9577-6CrossRef
  23. Michiko N, Tomohiro I, Michiko I, Kosei A, Tomoya O, Watanabe Y, Koji K, Chikage T, Keisuke I, Naomichi K, Kanae O, Megumi H, Saori T, Keigo H, Iku A, Kazuma K, Ayaka Y, Daisuke K, Michinari M (2015) Inter-specific and sexual differences in architectural traits of two dioecious Lindera species (Lauraceae). Plant Ecol 216:99–109. doi:10.1007/s11258-014-0419-7CrossRef
  24. Midgley JJ (2010) Causes of secondary sexual differences in plants—evidence from extreme leaf dimorphism in Leucadendron (Proteaceae). S Afr J Bot 76:588–592. doi:10.1016/j.sajb.2010.05.001CrossRef
  25. Nanami S, Kawaguchi H, Yamakura T (2005) Sex ratio and gender dependent neighboring effects in Podocarpus nagi, a dioecious tree. Plant Ecol 177:209–222. doi:10.1007/s11258-005-2210-2CrossRef
  26. Nazanin S, Taraneh S (2013) A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant. Appl Energ 104:353–361. doi:10.1016/j.apenergy.2012.11.013CrossRef
  27. Nicotra AB (1999) Sexually dimorphic growth in the dioecious tropical shrub Siparuna grandiflora. Funct Ecol 13:322–331. doi:10.1046/j.1365-2435.1999.00326.xCrossRef
  28. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348. doi:10.1046/j.1469-8137.2002.00477.xCrossRef
  29. Obeso JR, Alvarez SM, Retuerto R (1998) Sex ratios, size distributions, and sexual dimorphism in the dioecious tree Ilex aquifolium (Aquifoliaceae). Am J Bot 85:1602–1608. doi:10.2307/2446488CrossRefPubMed
  30. Petzold A, Pfeiffer T, Jansen F, Eusemann P, Schnittler M (2013) Sex ratios and clonal growth in dioecious Populus euphratica Oliv., Xinjiang Prov., Western China. Trees 27:729–744. doi:10.1007/s00468-012-0828-yCrossRef
  31. Popp JW, Reinartz JA (1988) Sexual dimorphism in biomass allocation and clonal growth of Xanthoxylum americanum. Am J Bot 75:1732–1741. doi:10.2307/2444688CrossRef
  32. Rocheleau AF, Houle G (2001) Different cost of reproduction for the males and females of the rare dioecious shrub Corema conradii (Empetraceae). Am J Bot 88:659–666. doi:10.2307/2657066CrossRefPubMed
  33. Roff D (1993) Evolution of life histories: theory and analysis. Chapman and Hall, New York
  34. Rosta M, Tord J, Almeida S (2014) Biomass equations for tropical forest tree species in Mozambique. Forests 5:535–556. doi:10.3390/f5030535CrossRef
  35. Sakai AK (1990) Sex ratios of red maple (Acer rubrum) populations in Northern Lower Michigan. Ecology 71:571–580. doi:10.2307/1940310CrossRef
  36. Shea MM, Dixon EM, Sharitz RR (1993) Size differences, sex ratio, and spatial distribution of male and female water tupelo, Nyssa aquatica (Nyssaceae). Am J Bot 80:26–30. doi:10.2307/2445116CrossRef
  37. Swensen SM, Luthi JN, Rieseberg LH (1998) Datiscaceae revisited: monophyly and the sequence of breeding system evolution. Syst Bot 23:157–169. doi:10.2307/2419585CrossRef
  38. Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five North American tree species. Forest Ecol Manag 97:1–24. doi:10.1016/S0378-1127(97)00019-4CrossRef
  39. Torimaru T, Tomaru N (2012) Reproductive investment at stem and genet levels in male and female plants of the clonal dioecious shrub Ilex leucoclada (Aquifoliaceae). Botany 90:301–310. doi:10.1139/b2012-004CrossRef
  40. Vahedi AA (2016) Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran. Biomass Bioenerg 88:66–76. doi:10.1016/j.biombioe.2016.03.020CrossRef
  41. Vassiliadis C, Valero M, Saumitou LP (2000) A model for the evolution of high frequencies of males in an androdioecious plant based on a cross-compatibility advantage of males. Heredity 85:413–422. doi:10.1046/j.1365-2540.2000.00755.xCrossRefPubMed
  42. Verónica CC, Rodolfo D (2010) Sex-related differences in reproductive allocation, growth, defense and herbivory in three dioecious Neotropical Palms. Plos one 5:1–9. doi:10.1371/journal.pone.0009824
  43. Williams K, Koch GW, Mooney HA (1985) The carbon balance of flowers of Diplacus aurantiacus (Scrophulariaceae). Oecologia 66:530–535. doi:10.1007/BF00379345CrossRef
  44. Xiao CW, Ceulemans R (2004) Allometric relationships for below- and aboveground biomass of young Scots pines. Forest Ecol Manag 203:177–186. doi:10.1016/j.foreco.2004.07.062CrossRef
  45. Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibliotheca genetica, Leipzig
  46. Zhang CY, Wang J, Zhao X-H, Xia F-C, Gadow KV (2012) Sexual dimorphism in reproductive and vegetative allometry for two dioecious Rhamnus plants in north-eastern China. EurJ For Res 131:1287–1296. doi:10.1007/s10342-012-0598-5CrossRef
  47. Zhang XN, Zhang C-Y, Zhao X-H (2014) Effect of sex ratio, habitat factors and neighborhood competition on stem growth in the dioecious tree Fraxinus mandshurica. Ecol Res 29:309–317. doi:10.1007/s11284-013-1125-yCrossRef
  48. Zheng CH, Mason EG, Jia LM, Wei SP, Sun CW, Duan J (2015) A single-tree additive biomass model of Quercus variabilis Blume forests in North China. Trees 29:705–716. doi:10.1007/s00468-014-1148-1CrossRef
  49. Zianis D, Mencuccini M (2003) Aboveground biomass relationships for beech (Fagus moesiaca Cz) trees in Vermios Mountain, Northern Greece, and generalised equations for Fagus sp. Ann Forest Sci 60:439–448. doi:10.1051/forest:2003036CrossRef

For further details log on website :

http://link.springer.com/article/10.1007/s13595-016-0561-6



No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...