Blog List

Monday, 7 November 2016

Prediction of blackwood Kraft pulps yields with wood NIR–PLSR models

Published Date
Volume 50, Issue 6pp 1307–1322

DOI: 10.1007/s00226-016-0837-x

Cite this article as: 
Santos, A.J.A., Anjos, O. & Pereira, H. Wood Sci Technol (2016) 50: 1307. doi:10.1007/s00226-016-0837-x

  • António J. A. Santos
  • Ofélia Anjos
  • Helena Pereira

Pulp yield is an important measure of pulpwood quality, which is used regularly by the pulp and paper industry for which the possibility of using rapid methods to predict pulp yield would be very useful for screening and quality control. This work addresses the prediction of Kraft pulp yield under standard identical conditions and targeted to a kappa number of 15, using near-infrared (NIR) partial least squares regression modelling. A total of 75 pulp samples of Acacia melanoxylon R. Br. (blackwood) with a pulp yield variation range of 47.0–58.2 % were used. Very good correlations between NIR spectra and pulp yield were obtained. Ten methods were used for PLS analysis (cross-validation with 62 samples), and an external validation was made with 13 samples. The 2ndDer pre-processed spectra coupling two wavenumber ranges from 9087 to 5440 and 4605 to 4243 cm−1 allowed the best model with a standard error of prediction of 0.4 %, a r2 of 98.1 %, and the ratios of performance to deviation (RPDTS) of 4.8. According to AACC Method 39-00, the present model is sufficiently accurate to be used in screening programs and in quality control (RPDCV = 6.9).


  1. AACC-Standards (1999) AACC Method 39-00:15 Near-infrared methods-guidelines for model development and maintenance. American Association of Cereal Chemists (AACC)
  2. Alves A, Santos AJA, da Silva Perez D, Rodrigues J, Pereira H, Simões R, Schwanninger M (2007) NIR PLSR model selection for Kappa number prediction of maritime pine kraft pulps. Wood Sci Technol 41(6):491–499CrossRefGoogle Scholar
  3. Anjos O, Santos AJA, Simões R (2011) Effect of Acacia melanoxylon fibre morphology on papermaking potential. Appita J 64(2):185–191Google Scholar
  4. Borralho NM, Cotterill PP, Kanowski PJ (1993) Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Can J For Res 23(4):648–656CrossRefGoogle Scholar
  5. Downes G, Meder R, Hicks C, Ebdon N (2009) Developing and evaluating a multisite and multispecies NIR calibration for the prediction of Kraft pulp yield in eucalypts. South For J For Sci 71(2):155–164Google Scholar
  6. Downes GM, Harwood CE, Wiedemann J, Ebdon N, Bond H, Meder R (2012) Radial variation in Kraft pulp yield and cellulose content in Eucalyptus globulus wood across three contrasting sites predicted by near infrared spectroscopy. Can J For Res 42(8):1577–1586CrossRefGoogle Scholar
  7. Easty DB, Berben SA, DeThomas FA, Brimmer PJ (1990) Near-infrared spectroscopy for the analysis of wood pulp: quantifying hardwood-softwood mixtures and estimating lignin content. Tappi J 73(10):257–261Google Scholar
  8. Fardim P, Ferreira MM, Duran N (2002) Multivariate calibration for quantitative analysis of eucalypt kraft pulp by NIR spectrometry. J Wood Chem Technol 22(1):67–81CrossRefGoogle Scholar
  9. Hauksson J, Bergqvist G, Bergsten U, Sjostrom M, Edlund U (2001) Prediction of basic wood properties for Norway spruce. Interpretation of near infrared spectroscopy data using partial least squares regression. Wood Sci Technol 35(6):475–485CrossRefGoogle Scholar
  10. Hein P, Sá V, Bufalino L, Mendes L (2009) Calibrations based on near infrared spectroscopic data to estimate wood-cement panel properties. BioResources 4(4):616–623Google Scholar
  11. Hodge G, Woodbridge W (2004) Use of near infrared spectroscopy to predict lignin content in tropical and subtropical pines. J Near Infrared Spectrosc 12(2):381–390CrossRefGoogle Scholar
  12. Kelley S, Rials G, Groom L, So C (2004) Use of near infrared spectroscopy to predict the mechanical properties of six softwoods. Holzforschung 58(3):252–260CrossRefGoogle Scholar
  13. Kipuputwa C, Grzeskowiak V, Louw JH (2010) The use of near-infrared scanning for the prediction of pulp yield and chemical properties of Pinus patula in the Mpumalanga escarpment area of South Africa Southern Forests. J For Sci 72(3–4):181–189Google Scholar
  14. Lourenço A, Baptista I, Gominho J, Pereira H (2008) The influence of heartwood on the pulping properties of Acacia melanoxylon wood. J Wood Sci 54(6):464–469CrossRefGoogle Scholar
  15. Meder R, Brawner JT, Downes GM, Ebdon N (2011) Towards the in-forest assessment of Kraft pulp yield: comparing the performance of laboratory and hand-held instruments and their value in screening breeding trials. J Near Infrared Spectrosc 19(5):421–429CrossRefGoogle Scholar
  16. Michell AJ (1995) Pulpwood quality estimation by near-infrared spectroscopic measurements on eucalypt woods. Appita J 48(6):425–428Google Scholar
  17. Mora CR, Schimleck LR (2008) On the selection of samples for multivariate regression analysis: application to near-infrared (NIR) calibration models for the prediction of pulp yield in Eucalyptus nitens. Can J For Res 38(10):2626–2634CrossRefGoogle Scholar
  18. Pereira H, Santos AJA, Anjos O (2016) Fibre morphological characteristics of Kraft pulps of Acacia melanoxylon estimated by NIR–PLS-R models. Materials 9(1):8CrossRefGoogle Scholar
  19. Poke F, Raymond C (2006) Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus. J Wood Chem Technol 26(2):187–199CrossRefGoogle Scholar
  20. Poke F, Wright J, Raymond C (2004) Predicting extractives and lignin contents in Eucalyptus globulus using near infrared reflectance analysis. J Wood Chem Technol 24(1):55–67CrossRefGoogle Scholar
  21. Ramadevi P, Meder R, Varghese M (2010) Rapid estimation of kraft pulp yield and lignin in Eucalyptus camaldulensis and Leucaena leucocephala by diffuse reflectance near-infrared spectroscopy (NIRS). South For J For Sci 72(2):107–111Google Scholar
  22. Raymond CA, Schimleck LR, Muneri A, Michell AJ (2001) Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using near infrared reflectance analysis. Wood Sci Technol 35(3):203–215CrossRefGoogle Scholar
  23. Ruiz J, Rodriguez J, Baeza J, Freer J (2005) Estimating density and pulping yield of E. globulus wood: comparison of near-infrared (NIR) and mid-infrared (MIR). J Chil Chem Soc 50(3):565–568CrossRefGoogle Scholar
  24. Santos AJA, Anjos O, Simões R (2006) Papermaking potential of Acacia dealbata and Acacia melanoxylon. Appita J 59(1):58–64Google Scholar
  25. Santos AJA, Alves AM, Simões RM, Pereira H, Rodrigues J, Schwanninger M (2012a) Estimation of wood basic density of Acacia melanoxylon (R. Br.) by near infrared spectroscopy. J Near Infrared Spectrosc 20(2):267–274CrossRefGoogle Scholar
  26. Santos AJA, Anjos O, Amaral ME, Gil N, Pereira H, Simões R (2012a) Influence on pulping yield and pulp properties of wood density of Acacia melanoxylon. J Wood Sci 58:479–486CrossRefGoogle Scholar
  27. Santos AJA, Simões R, Tavares M (2013) Variation of some wood macroscopic properties along the stem of Acacia melanoxylon R. Br. adult trees in Portugal. For Syst 22(3):463–470Google Scholar
  28. Santos AJA, Anjos O, Simões R, Rodrigues J, Pereira H (2014) Kappa number prediction of Acacia melanoxylon unbleached Kraft pulps using NIR–PLSR models with a narrow interval of variation. BioResources 9(4):6735–6744CrossRefGoogle Scholar
  29. Santos AJA, Anjos O, Pereira H (2015) Estimation of Acacia melanoxylon unbleached Kraft pulp brightness by NIR spectroscopy. For Syst 24(2):03Google Scholar
  30. Schimleck LR, French J (2002) Application of NIR spectroscopy to clonal Eucalyptus globulus samples covering a narrow range of pulp yield. Appita J 55(2):149–154Google Scholar
  31. Schimleck LR, Michell AJ (1998) Determination of within-tree variation of kraft pulp yield using near-infrared spectroscopy. Tappi J 81(5):229–236Google Scholar
  32. Schimleck LR, Michell AJ, Raymond CA, Muneri A (1998) Assessment of the pulpwood quality of standing trees using near infrared spectroscopy. J Near Infrared Spectrosc 6:A117–A123CrossRefGoogle Scholar
  33. Schimleck LR, Raymond CA, Beadle CL, Downes GM, Kube PD, French J (2000) Applications of NIR spectroscopy to forest research. Appita J 53(6):458–464Google Scholar
  34. Schimleck LR, Kube PD, Raymond CA (2004) Genetic improvement of kraft pulp yield in Eucalyptus nitens using cellulose content determined by near infrared spectroscopy. Can J For Res 34(11):2363–2370CrossRefGoogle Scholar
  35. Schimleck LR, Kube PD, Raymond CA, Michell AJ, French J (2005a) Estimation of whole-tree kraft pulp yield of Eucalyptus nitens using near-infrared spectra collected from increment cores. Can J For Res 35(12):2797–2805CrossRefGoogle Scholar
  36. Schimleck LR, Payne P, Wearne RH (2005b) Determination of important pulp properties of hybrid poplar by near infrared spectroscopy. Wood Fiber Sci 37(3):462–471Google Scholar
  37. Schimleck LR, Kube PD, Raymond CA, Michell AJ, French J (2006a) Extending near infrared reflectance(NIR) pulp yield calibrations to new sites and species. J Wood Chem Technol 26(4):299–311CrossRefGoogle Scholar
  38. Schimleck LR, Rezende GD, Demuner BJ, Downes GM (2006b) Estimation of whole-tree wood quality traits using near infrared spectra from increment cores. Appita J 59(3):231–236Google Scholar
  39. Schwanninger M, Hinterstoisser B (2001) Determination of the lignin content in wood by FT-NIR. In: 11th ISWPC, international symposium on wood and pulping chemistry, nice, France, Centre Technique Papeterie III. pp 641–644
  40. Silva JC, Borralho NM, Araujo JA, Vaillancourt RE, Potts BM (2009) Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genet Genomes 5(2):291–305CrossRefGoogle Scholar
  41. Sykes R, Li B, Hodge G, Goldfarb B, Kadla J, Chang H (2005) Prediction of loblolly pine wood properties using transmittance near-infrared spectroscopy. Can J For Res 35(10):2423–2431CrossRefGoogle Scholar
  42. Terdwongworakul A, Punsuwan V, Thanapase W, Tsuchikawa S (2005) Rapid assessment of wood chemical properties and pulp yield of Eucalyptus camaldulensis in Thailand tree plantations by near infrared spectroscopy for improving wood selection for high quality pulp. J Wood Sci 51(2):167–171CrossRefGoogle Scholar
  43. Tsuchikawa S, Kobori H (2015) A review of recent application of near infrared spectroscopy to wood science and technology. J Wood Sci 61(3):213–220CrossRefGoogle Scholar
  44. Tyson JA, Schimleck LR, Aguiar AM, Abad JI, Rezende GD (2009) Adjusting near infrared wood property calibrations for central Brazil to predict the wood properties of samples from southern Brazil. Appita J 62(1):46–51Google Scholar
  45. Wright JA, Birkett MD, Gambino MJ (1990) Prediction of pulp yield and cellulose content from wood samples using near infrared reflectance spectroscopy. Tappi J 73(8):164–166Google Scholar
  46. Xu L, Yan S, Cai C, Wang Z, Yu X (2013) The feasibility of using near-infrared spectroscopy and chemometrics for untargeted detection of protein adulteration in yogurt: removing unwanted variations in pure yogurt. J Anal Methods Chem. Article ID 201873
  47. Yao S, Wu GF, Jiang YF, Fu XD, Lu HK, Su M, Pu JW (2010a) Extending hemicelluloses content calibration of Acacia spp. using NIR to new sites. Spectrosc Spectr Anal 30(5):1206–1209Google Scholar
  48. Yao S, Wu GF, Xing M, Zhou SK, Pu JW (2010b) Determination of lignin content in Acaciaspp. using near-infrared reflectance spectroscopy. BioResources 5(2):556–562Google Scholar
  49. Zhang H, Song SP, Lang Q, Zhang J, Pu JW (2012) Rapid predictive models for minimally destructive Kappa number and pulp yield of Acacia spp. with near infrared reflectance (NIR) spectroscopy. BioResources 7(1):616–623Google Scholar

For further details log on website :

No comments:

Post a Comment

Mangrove Forest Management & Restoration

The Sabah Forestry Department has conserved most if not all Mangrove Forests under Class V for marine life conservation and as a natural me...