Published Date
Author
In this paper, we provide a phylogenetic overview of Basidiomycota and related phyla in relation to ten years of DNA based phylogenetic studies since the AFTOL publications in 2007. We selected 529 species to address phylogenetic relationships of higher-level taxa using a maximum-likelihood framework and sequence data from six genes traditionally used in fungal molecular systematics (nrLSU, nrSSU, 5.8S, tef1-α, rpb1 and rpb2). These species represent 18 classes, 62 orders, 183 families, and 392 genera from the phyla Basidiomycota (including the newly recognized subphylum Wallemiomycotina) and Entorrhizomycota, and 13 species representing 13 classes of Ascomycota as outgroup taxa. We also conducted a molecular dating analysis based on these six genes for 116 species representing 17 classes and 54 orders of Basidiomycota and Entorrhizomycota. Finally we performed a phyloproteomics analysis from 109 Basidiomycota species and 6 outgroup taxa using amino-acid sequences retrieved from 396 orthologous genes. Recognition of higher taxa follows the criteria in Zhao et al (Fungal Divers 78:239–292, 2016): (i) taxa must be monophyletic and statistically well-supported in molecular dating analyses, (ii) their respective stem ages should be roughly equivalent, and (iii) stem ages of higher taxa must be older than those of lower level taxa. The time-tree indicates that the mean of stem ages of Basidiomycota and Entorrhizomycota are ca. 530 Ma; subphyla of Basidiomycota are 406–490 Ma; most classes are 358–393 Ma for those of Agaricomycotina and 245–356 Ma for those of Pucciniomycotina and Ustilaginomycotina; most orders of those subphyla split 120–290 Ma. Monophyly of most higher-level taxa of Basidiomycota are generally supported, especially those taxa introduced in the recent ten years: phylum Entorrhizomycota, classes Malasseziomycetes, Moniliellomycetes, Spiculogloeomycetes, Tritirachiomycetes and orders Amylocorticiales, Golubeviales, Holtermanniales, Jaapiales, Lepidostromatales, Robbauerales, Stereopsidales and Trichosporonales. However, the younger divergence times of Leucosporidiales (Microbotryomycetes) indicate that its order status is not supported, thus we propose combining it under Microbotryales. On the other hand, the families Buckleyzymaceae and Sakaguchiaceae (Cystobasidiomycetes) are raised to Buckleyzymales and Sakaguchiales due to their older divergence times. Cystofilobasidiales (Tremellomycetes) has an older divergence time and should be amended to a higher rank. We however, do not introduce it as new class here for Cystofilobasidiales, as DNA sequences from these taxa are not from their respective types and thus await further studies. Divergence times for Exobasidiomycetes, Cantharellales, Gomphales and Hysterangiales were obtained based on limited species sequences in molecular dating study. More comprehensive phylogenetic studies on those four taxa are needed in the future because our ML analysis based on wider sampling, shows they are not monophyletic groups. In general, the six-gene phylogenies are in agreement with the phyloproteomics tree except for the placements of Wallemiomycotina, orders Amylocorticiales, Auriculariales, Cantharellales, Geastrales, Sebacinales and Trechisporales from Agaricomycetes. These conflicting placements in the six-gene phylogeny vs the phyloproteomics tree are discussed. This leads to future perspectives for assessing gene orthology and problems in deciphering taxon ranks using divergence times.
References
Funding Information
For further details log on website :
https://link.springer.com/article/10.1007/s13225-017-0381-5
- First Online:
- 02 June 2017
DOI: 10.1007/s13225-017-0381-5
- Cite this article as:
- Zhao, RL., Li, GJ., Sánchez-Ramírez, S. et al. Fungal Diversity (2017). doi:10.1007/s13225-017-0381-5
Author
In this paper, we provide a phylogenetic overview of Basidiomycota and related phyla in relation to ten years of DNA based phylogenetic studies since the AFTOL publications in 2007. We selected 529 species to address phylogenetic relationships of higher-level taxa using a maximum-likelihood framework and sequence data from six genes traditionally used in fungal molecular systematics (nrLSU, nrSSU, 5.8S, tef1-α, rpb1 and rpb2). These species represent 18 classes, 62 orders, 183 families, and 392 genera from the phyla Basidiomycota (including the newly recognized subphylum Wallemiomycotina) and Entorrhizomycota, and 13 species representing 13 classes of Ascomycota as outgroup taxa. We also conducted a molecular dating analysis based on these six genes for 116 species representing 17 classes and 54 orders of Basidiomycota and Entorrhizomycota. Finally we performed a phyloproteomics analysis from 109 Basidiomycota species and 6 outgroup taxa using amino-acid sequences retrieved from 396 orthologous genes. Recognition of higher taxa follows the criteria in Zhao et al (Fungal Divers 78:239–292, 2016): (i) taxa must be monophyletic and statistically well-supported in molecular dating analyses, (ii) their respective stem ages should be roughly equivalent, and (iii) stem ages of higher taxa must be older than those of lower level taxa. The time-tree indicates that the mean of stem ages of Basidiomycota and Entorrhizomycota are ca. 530 Ma; subphyla of Basidiomycota are 406–490 Ma; most classes are 358–393 Ma for those of Agaricomycotina and 245–356 Ma for those of Pucciniomycotina and Ustilaginomycotina; most orders of those subphyla split 120–290 Ma. Monophyly of most higher-level taxa of Basidiomycota are generally supported, especially those taxa introduced in the recent ten years: phylum Entorrhizomycota, classes Malasseziomycetes, Moniliellomycetes, Spiculogloeomycetes, Tritirachiomycetes and orders Amylocorticiales, Golubeviales, Holtermanniales, Jaapiales, Lepidostromatales, Robbauerales, Stereopsidales and Trichosporonales. However, the younger divergence times of Leucosporidiales (Microbotryomycetes) indicate that its order status is not supported, thus we propose combining it under Microbotryales. On the other hand, the families Buckleyzymaceae and Sakaguchiaceae (Cystobasidiomycetes) are raised to Buckleyzymales and Sakaguchiales due to their older divergence times. Cystofilobasidiales (Tremellomycetes) has an older divergence time and should be amended to a higher rank. We however, do not introduce it as new class here for Cystofilobasidiales, as DNA sequences from these taxa are not from their respective types and thus await further studies. Divergence times for Exobasidiomycetes, Cantharellales, Gomphales and Hysterangiales were obtained based on limited species sequences in molecular dating study. More comprehensive phylogenetic studies on those four taxa are needed in the future because our ML analysis based on wider sampling, shows they are not monophyletic groups. In general, the six-gene phylogenies are in agreement with the phyloproteomics tree except for the placements of Wallemiomycotina, orders Amylocorticiales, Auriculariales, Cantharellales, Geastrales, Sebacinales and Trechisporales from Agaricomycetes. These conflicting placements in the six-gene phylogeny vs the phyloproteomics tree are discussed. This leads to future perspectives for assessing gene orthology and problems in deciphering taxon ranks using divergence times.
References
- Aime MC, Matheny PB, Henk DA, Frieders EM et al (2006) An overview of the higher-level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences. Mycologia 98:896–905PubMedCrossRefGoogle Scholar
- Aime MC, Toome M, McLaughlin D (2014) The Pucciniomycotina. In: McLaughlin D, Spatafora JW (eds) The mycota VII part A. Systematics and evolution, 2nd edn. Springer, Berlin, pp 271–294Google Scholar
- Avise JC, Johns GC (1999) Proposal for a standardized temporal scheme of biological classification for extant species. Proc Natl Acad Sci USA 96:7358–7363PubMedPubMedCentralCrossRefGoogle Scholar
- Bauer R, Begerow D, Nagler A, Oberwinkler F (2001) The Georgefischeriales: a phylogenetic hypothesis. Mycol Res 104:416–424CrossRefGoogle Scholar
- Bauer R, Begerow D, Sampaio JP, Weiß M, Oberwinkler F (2006) The simple-septate basidiomycetes: a synopsis. Mycol Prog 5:41–66CrossRefGoogle Scholar
- Bauer R, Garnica S, Oberwinkler F, Riess K et al (2015) Entorrhizomycota: A new fungal phylum reveals new perspectives on the evolution of fungi. PLoS ONE 10:e0128183PubMedPubMedCentralCrossRefGoogle Scholar
- Bauer R, Oberwinkler F, Vánky K (1997) Ultrastructural markers and systematics in smut fungi and allied taxa. Can J Bot 75:1273–1314CrossRefGoogle Scholar
- Begerow D, Bauer R, Boekhout T (2000) Phylogenetic placements of ustilaginomycetous anamorphs as deduced from nuclear LSU rDNA sequences. Mycol Res 104:53–60CrossRefGoogle Scholar
- Begerow D, Bauer R, Oberwinkler F (1997) Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Can J Bot 75:2045–2056CrossRefGoogle Scholar
- Begerow D, Stoll M, Bauer R (2006) A phylogenetic hypothesis of Ustilaginomycotina based on multiple gene analyses and morphological data. Mycologia 98:906–916PubMedCrossRefGoogle Scholar
- Beimforde C, Feldberg K, Nylinder S, Rikkinen J et al (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398PubMedCrossRefGoogle Scholar
- Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—how close are we? Fungal Biol Rev 24:1–16CrossRefGoogle Scholar
- Binder M, Hibbett DS (2002) Higher-level phylogenetic relationships of homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. Mol Phylogenet Evol 22:76–90PubMedCrossRefGoogle Scholar
- Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E (2005) The phylogenetic distribution of resupinate forms in the homobasidiomycetes. Syst Biodivers 3:113–157CrossRefGoogle Scholar
- Binder M, Larsson KH, Matheny PB, Hibbett DS (2010) Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102:865–880PubMedCrossRefGoogle Scholar
- Blackwell M, Hibbett DS, Taylor JW, Spatafora JW (2006) Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98:829–837PubMedCrossRefGoogle Scholar
- Boekhout T, Fonseca A, Sampaio JP, Bandoni RJ et al (2011) Discussion of teleomorphic and anamorphic basidiomycetous yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study. Elsevier, Amsterdam, pp 1356–1367Google Scholar
- Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498PubMedCrossRefGoogle Scholar
- Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60PubMedCrossRefGoogle Scholar
- Budd GE (2001) Climbing life’s tree. Nature 412:487PubMedCrossRefGoogle Scholar
- Budd GE, Jensen S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biol Rev 75:253–295PubMedCrossRefGoogle Scholar
- Bushley KE, Turgeon BG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10:26PubMedPubMedCentralCrossRefGoogle Scholar
- Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T (2012) Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10:47PubMedPubMedCentralCrossRefGoogle Scholar
- Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973PubMedPubMedCentralCrossRefGoogle Scholar
- Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266:1691–1694PubMedCrossRefGoogle Scholar
- Chen ZH, Zhang P, Zhang ZG (2014) Investigation and analysis of 102 mushroom poisoning cases in Southern China from 1994 to 2012. Fungal Divers 64:123–131CrossRefGoogle Scholar
- Dai YC, Cui BK, Si J, He SH et al (2015) Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycol Prog 14:62CrossRefGoogle Scholar
- Dai YC, Cui BK, Yuan HS, Li BD (2007) Pathogenic wood-decaying fungi in China. For Pathol 37:105–120CrossRefGoogle Scholar
- Dai YC, Yang ZL, Cui BK, Yu CJ, Zhou LW (2009) Species diversity and utilization of medicinal mushrooms and fungi in China (Review). Int J Med Mushrooms 11:287–302CrossRefGoogle Scholar
- Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedPubMedCentralCrossRefGoogle Scholar
- De Silva DD, Rapior S, Fons F, Bahkali AH, Hyde KD (2012a) Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. Fungal Divers 55:1–35CrossRefGoogle Scholar
- De Silva DD, Rapior S, Hyde KD, Bahkali AH (2012b) Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers 56:1–29CrossRefGoogle Scholar
- De Silva DD, Rapior S, Sudarman E, Stadler M et al (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40CrossRefGoogle Scholar
- Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375PubMedCrossRefGoogle Scholar
- Dentinger BT, Ammirati JF, Both EE, Desjardin DE et al (2010) Molecular phylogenetics of porcini mushrooms (Boletus section Boletus). Mol Phylogenet Evol 57:1276–1292PubMedCrossRefGoogle Scholar
- Doweld AB (2014) Index Fungorum no. 73. http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=550364
- Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88PubMedPubMedCentralCrossRefGoogle Scholar
- Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Phylogenet Evol 29:1969–1973CrossRefGoogle Scholar
- Edgar RC (2004a) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedPubMedCentralCrossRefGoogle Scholar
- Edgar RC (2004b) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113CrossRefGoogle Scholar
- Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A (2000) Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371PubMedCrossRefGoogle Scholar
- Floudas D, Binder M, Riley R, Barry K et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719PubMedCrossRefGoogle Scholar
- Garcia-Sandoval R, Wang Z, Binder M, Hibbett DS (2011) Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot. Mycologia 103:510–524PubMedCrossRefGoogle Scholar
- Garnica S, Weiss M, Walther G, Oberwinkler F (2007) Reconstructing the evolution of agarics from nuclear gene sequences and basidiospore ultrastructure. Mycol Res 111:1019–1029PubMedCrossRefGoogle Scholar
- Gueidan C, Ruibal C, de Hoog GS, Schneider H (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996PubMedCrossRefGoogle Scholar
- Hamamoto M, Nakase T (2000) Phylogenetic analysis of the ballistoconidium-forming yeast genus Sporobolomyces based on 18S rDNA sequences. Int J Syst Evol Microbiol 50:1373–1380PubMedCrossRefGoogle Scholar
- Hedges S, Marin J, Suleski M, Paymer M, Kumar S (2015) Tree of life reveals clock-like speciation and diversification. Mol Biol Evol. doi:10.1093/molbev/msv037PubMedPubMedCentralGoogle Scholar
- Hennig W (1966) Phylogenetic systematics. University of Illinois Press, UrbanaGoogle Scholar
- Hibbett DS (2001) Shiitake mushrooms and molecular clocks: historical biogeography of Lentinula. J Biogeogr 28:231–241CrossRefGoogle Scholar
- Hibbett DS (2006) A Phylogenetic overview of the Agaricomycotina. Mycologia 98:917–925PubMedCrossRefGoogle Scholar
- Hibbett DS (2014) Major events in the evolution of the Fungi. In: Losos J (ed) Princeton guide to evolution. Princeton University Press, Princeton, pp 152–158Google Scholar
- Hibbett DS, Bauer R, Binder M, Giachini AJ et al (2014) Agaricomycetes. In: McLaughlin DJ, Spatafora JW (eds) The mycota, vol. VII, part A. Systematics and evolution, 2nd edn. Springer, Berlin, pp 373–429Google Scholar
- Hibbett DS, Binder M, Bischoff JF, Blackwell M et al (2007) A higher- level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedCrossRefGoogle Scholar
- Hibbett DS, Matheny PB (2009) Relative ages of ectomycorrhizal mushrooms and their plant hosts. BMC Biol 7:13PubMedPubMedCentralCrossRefGoogle Scholar
- Hibbett DS, Pine EM, Langer E, Langer G, Donoghue MJ (1997) Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc Natl Acad Sci USA 94:12002–12006PubMedPubMedCentralCrossRefGoogle Scholar
- Hibbett DS, Tsuneda A, Fukumasa-Nakai Y, Donoghue MJ (1995) Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia 87:618–638CrossRefGoogle Scholar
- Hickerson MJ, Carstens BC, Cavender-Bares J (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol 54:291–301PubMedCrossRefGoogle Scholar
- Hodkinson BP, Moncada B, Lücking R (2014) Lepidostromatales, a new order of lichenized fungi (Basidiomycota, Agaricomycetes), with two new genera, Ertzia and Sulzbacheromyces, and one new species, Lepidostroma winklerianum. Fungal Divers 64:165–179CrossRefGoogle Scholar
- Hongsanan S, Sánchez-Ramírez S, Crous PW, Ariyawansa HA et al (2016) The evolution of fungal epiphytes. Mycosphere 7:1690–1712Google Scholar
- Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan W 3rd, Domínguez LS, Nouhra ER, Geml J, Giachini AJ, Kenney SR, Simpson NB, Spatafora JW, Trappe JM (2006) Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98:949–959PubMedCrossRefGoogle Scholar
- Hyde KD, Hongsanan S, Jeewon R, Bhat DJ et al (2016) Fungal Diversity Notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. doi:10.1007/s13225-016-0373-xGoogle Scholar
- Hyde KD, Jones EBG, Liu JK, Ariyawansa H et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313CrossRefGoogle Scholar
- Hyde KD, Nilsson RHSA, Ariyawansa HA et al (2014) One stop shop: backbones trees for important phytopathogenic genera: I. Fungal Divers 67:21–125CrossRefGoogle Scholar
- James TY, Kauff F, Schoch CL, Matheny PB et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 98:829–837Google Scholar
- Jančič S, Zalar P, Kocev D, Schroers H-J et al (2016) Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Divers 76:97–118CrossRefGoogle Scholar
- Jülich W (1981) Higher taxa of Basidiomycetes. Bibliogr Mycol 85:1–845Google Scholar
- Kemler M, Lutz M, Göker M, Oberwinkler F, Begerow D (2009) Hidden diversity in the non-caryophyllaceous plant-parasitic members of Microbotryum (Pucciniomycotina: Microbotryales). Syst Biodivers 7:297–306CrossRefGoogle Scholar
- Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth & Bisby’s dictionary of the fungi, 10th edn. CABI, WallingfordGoogle Scholar
- Kottke I, Beiter A, Weiss M, Haug I et al (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968PubMedCrossRefGoogle Scholar
- Kozlov AM, Aberer AJ, Stamatakis A (2015) ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics 31:2577–2579PubMedPubMedCentralCrossRefGoogle Scholar
- Kuhnert E, Surup F, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Stadler M (2015) Lenormandins A—G, new azaphilones from Hypoxylon lenormandii and Hypoxylon jaklitschii sp. nov., recognised by chemotaxonomic data. Fungal Divers 71:165–184CrossRefGoogle Scholar
- Largent DL (1986a) How to identify mushrooms to genus vol. 1. Macroscopic features. Mad River Press, EurekaGoogle Scholar
- Largent DL (1986b) How to identify mushrooms to genus vol. 3. Microscopic features. Mad River Press, EurekaGoogle Scholar
- Larsson KH, Larsson E, Kõljalg U (2004) High phylogenetic diversity among corticioid Homobasidiomycetes. Mycol Res 108:983–1002PubMedCrossRefGoogle Scholar
- Lawrey JD, Binder M, Diederich P, Molina MC et al (2007) Phylogenetic diversity of lichen-associated Homobasidiomycetes. Mol Phylogenet Evol 44:778–789PubMedCrossRefGoogle Scholar
- LePage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410–412PubMedCrossRefGoogle Scholar
- Lepage T, Bryant D, Philippe H, Lartillot N (2007) A general comparison of relaxed molecular clock models. Mol Biol Evol 24:2669–2680PubMedCrossRefGoogle Scholar
- Li GJ, Hyde KD, Zhao RL, Hongsanan S et al (2016) Fungal Diversity Notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 78:1–237CrossRefGoogle Scholar
- Liu JK (2004) Mycochemistry of high fungi. China Sci and Tech Press, BeijingGoogle Scholar
- Liu NN, Ariyawansa HA, Hyde KD, Maharachchikumbura SSN et al (2016) Mycosphere essays X Perspectives into the value of genera, families and orders in fungal classification. Mycosphere 7:1649–1668Google Scholar
- Liu XZ, Wang QM, Göker M, Groenewald M et al (2015a) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147PubMedCrossRefGoogle Scholar
- Liu XZ, Wang QM, Theelen B, Groenewald M et al (2015b) Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 81:1–26PubMedPubMedCentralCrossRefGoogle Scholar
- Lutzoni F, Kauff F, Cox CJ, McLaughlin D et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1146–1180CrossRefGoogle Scholar
- Maddison WP, Maddison DR (2016). Mesquite: a modular system for evolutionary analysis. Version 3.2. http://mesquiteproject.org/mesquite/mesquite.html
- Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al (2015) Towards a natural classification and backbone tree for Sodariomycetes. Fungal Divers 72:199–301CrossRefGoogle Scholar
- Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC et al (2016) Families of Sordariomycetes. Fungal Divers 79:1–317CrossRefGoogle Scholar
- Matheny PB, Aime MC, Bougher NL, Buyck B et al (2009) Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. J Biogeogr 36:577–592CrossRefGoogle Scholar
- Matheny PB, Curtis JM, Hofstetter V, Aime MC et al (2006) Major clades of Agaricales: a multilocus phylogenetic overview. Mycologia 98:982–995PubMedCrossRefGoogle Scholar
- Matheny PB, Gossmann JA, Zalar P, Kumar TKA, Hibbett DS (2007a) Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. Can J Botany 84:1794–1805CrossRefGoogle Scholar
- Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). Am J Bot 89:688–698PubMedCrossRefGoogle Scholar
- Matheny PB, Wang Z, Binder M, Curtis JM et al (2007b) Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol 43:430–451PubMedCrossRefGoogle Scholar
- McPeek MA, Brown JM (2007) Clade age and not diversification rate explains species richness among animal taxa. Am Nat 169:E97–E106PubMedCrossRefGoogle Scholar
- Medina ME, Jones GW, Fitzpatrick DA (2011) Reconstructing the fungal tree of life using phylogenomics and a preliminary investigation of the distribution of yeast prion-like proteins in the fungal kingdom. J Mol Evol 73:116–133PubMedCrossRefGoogle Scholar
- Mikheyev AS, Mueller UG, Abbot P (2010) Comparative dating of attine ant and lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. Am Nat 175(6):E126–E133PubMedCrossRefGoogle Scholar
- Moncalvo J-M, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 49:278–305PubMedCrossRefGoogle Scholar
- Moncalvo J-M, Nilsson RH, Koster B, Dunham SM et al (2006) The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods. Mycologia 98:937–948PubMedCrossRefGoogle Scholar
- Moore RT (1980) Taxonomic proposals for the classification of marine yeasts and other yeast-like fungi including the smuts. Bot Mar 23:361–373Google Scholar
- Morehouse EA, James TY, Ganley ARD, Vilgalys R et al (2003) Multilocus sequence typing suggests the chytrid pathogen of amphibians is a recently emerged clone. Mol Ecol 12:395–403PubMedCrossRefGoogle Scholar
- Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol S 36:563–569CrossRefGoogle Scholar
- Nakase T (2000) Expanding world of ballistosporous yeasts: distribution in the phyllosphere, systematics and phylogeny. J Gen Appl Microbiol 46:189–216PubMedCrossRefGoogle Scholar
- Nobre T, Fernandes C, Boomsma JJ, Korb J, Aanen DK (2011) Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol Ecol 20:2023–2033PubMedCrossRefGoogle Scholar
- Oberwinkler F (2012) Evolutionary trends in Basidiomycota. Stapfia 96:45–104Google Scholar
- Padamsee M, Kumar TK, Riley R, Binder M et al (2012) The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet Biol 49:217–226PubMedCrossRefGoogle Scholar
- Peláez F, Martínez MJ, Martínez AT (1995) Screening of 68 species of Basidiomycetes for enzymes involved in lignin degradation. Mycol Res 99:37–42CrossRefGoogle Scholar
- Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33PubMedCrossRefGoogle Scholar
- Pointing SB, Pelling AL, Smith GJD, Hyde KD, Reddy CA (2005) Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycol Res 109:115–124PubMedCrossRefGoogle Scholar
- Rambaut A, Suchard M, Drummond A (2013) Tracer. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 15 Sept 2016
- Riess K, Bauer R, Kellner R, Kemler M et al (2015) Identification of a new order of root-colonising fungi in the Entorrhizomycota: Talbotiomycetales ord. nov. on eudicotyledons. IMA Fungus 6:129–133PubMedPubMedCentralCrossRefGoogle Scholar
- Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers 33:1–45Google Scholar
- Robinson NE, Robinson AB (2001) Molecular clocks. Proc Natl Acad Sci USA 98:944–949PubMedPubMedCentralCrossRefGoogle Scholar
- Rokas A, Chatzimanolis S (2010) From gene-scale to genome-scale phylogenetics: the data flood in, but the challenges remain. In: Murphy WJ (ed) Phylogenomics. Humana Press, TotowaGoogle Scholar
- Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approachs to resolving incongruence in molecular phylogenies. Nature 425:798–804PubMedCrossRefGoogle Scholar
- Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbiol Biotechnol 2:164–167CrossRefGoogle Scholar
- Ryberg M, Matheny PB (2012) Asynchronous origins of ectomycorrhizal clades of Agaricales). Proc R Soc B Biol Sci 279:2003–2011CrossRefGoogle Scholar
- Samarakoon MC, Hyde KD, Ariyawansa HA, Hongsanan S (2016) Mycosphere Essays X: divergence and ranking of taxa across the kingdoms Animalia, Fungi and Plantae. Mycosphere 7:1678–1689Google Scholar
- Sánchez-Ramírez S, Wilson AW, Ryberg M (2017) An overview of phylogenetic and historical approaches to mycorrhizal biogeography, diversity, and evolution. In: Tedersoo L (ed) Mycorrhizal biogeography, ecological studies 230. Springer, BerlinGoogle Scholar
- Sánchez-Ramírez S, Tulloss RE, Amalfi M, Moncalvo J-M (2015) Palaeotropical origins, boreotropical distribution and increased rates of diversification in a clade of edible ectomycorrhizal mushrooms (Amanita section Caesareae). J Biogeogr 42:351–363CrossRefGoogle Scholar
- Schell WA, Lee AG, Aime MC (2011) A new lineage in Pucciniomycotina: class Tritirachiomycetes, order Tritirachiales, family Tritirachiaceae. Mycologia 103:1331–1340PubMedCrossRefGoogle Scholar
- Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A (2002) Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517PubMedCrossRefGoogle Scholar
- Shelest E, Voigt K (2014) Genomics to study basal lineage fungal biology: phylogenomics suggests a common origin. Fungal genomics. In: Nowrousian M (ed) The mycota XIII, 2nd edn. Springer, BerlinGoogle Scholar
- Shirouzu T, Hirose D, Oberwinkler F, Shimomura N et al (2013) Combined molecular and morphological data for improving phylogenetic hypothesis in Dacrymycetes. Mycologia 105:1110–1125PubMedCrossRefGoogle Scholar
- Shirouzu T, Hirose D, Tokumasu S (2009) Taxonomic study of the Japanese Dacrymycetes. Persoonia 23:16–34PubMedPubMedCentralCrossRefGoogle Scholar
- Sinclair WA, Lyon HH, Johnson WT (1987) Diseases of trees and shrubs. Cornell University Press, Ithaca, p 574Google Scholar
- Sjökvist E, Pfeil BE, Larsson E, Larsson KH (2014) Stereopsidales—a new order of mushroom-forming fungi. PLoS ONE 9:e95227PubMedPubMedCentralCrossRefGoogle Scholar
- Skrede I, Engh IB, Binder M, Carlsen T et al (2011) Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. BMC Evol Biol 11:230PubMedPubMedCentralCrossRefGoogle Scholar
- Slippers B, Coutinho TA, Wingfield BD, Wingfield MJ (2003) A review of the genus Amylostereum and its association with woodwasps. S Afr J Sci 99:70–74Google Scholar
- Smith SY, Currah RS, Stockey RA (2004) Cretaceous and Eocene poroid hymenophores from Vancouver Island, British Columbia. Mycologia 96:180–186PubMedCrossRefGoogle Scholar
- Stadler T, Rabosky DL, Ricklefs R, Bokma F (2014) On age and species richness of higher taxa. Am Nat 184:447–455PubMedCrossRefGoogle Scholar
- Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
- Stefani FOP, Jones RH, May TW (2014) Concordance of seven gene genealogies compared to phenotypic data reveals multiple cryptic species in Australian dermocyboid Cortinarius (Agaricales). Mol Phylogenet Evol 71:249–260PubMedCrossRefGoogle Scholar
- Swann EC, Taylor JW (1993) Higher taxa of Basidiomycetes: an 18S rRNA gene perspective. Mycologia 85:923–936CrossRefGoogle Scholar
- Swann EC, Taylor JW (1995) Phylogenetic perspectives on basidiomycete systematics: evidence from the 18S rRNA gene. Can J Bot 73:S862–S868CrossRefGoogle Scholar
- Talavera G, Lukhtanov VA, Pierce NE, Vila R (2013) Establishing criteria for higher-level classification using molecular data: the systematics of Polyommatus blue butterflies (Lepidoptera, Lycaenidae). Cladistics 29:166–192CrossRefGoogle Scholar
- Tamura K, Battistuzzib FU, Billing-Rossb P, Murillob O et al (2012) Estimating divergence times in large molecular phylogenies. Proc Natl Acad Sci USA 109(47):19333–19338PubMedPubMedCentralCrossRefGoogle Scholar
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
- Taylor JW, Jacobson DJ, Kroken S, Kasuga T et al (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Gen Biol 31:21–32CrossRefGoogle Scholar
- van Dongen S (2000) Graph clustering by flow simulation. PhD thesis, University of Utrecht, Netherlands
- Van Driel GA, Humbel BM, Verkleu AJ, Stalpers J et al (2009) Septal pore complex morphology on the Agaricomycotina (Basidiomycota) with emphasis on the Cantharellales and Hymenochaetales. Mycol Res 113:559–576PubMedCrossRefGoogle Scholar
- Veldrea V, Abarenkova K, Bahrama M, Martosc F et al (2013) Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecol 6:256–268CrossRefGoogle Scholar
- Vilgalys R, Hopple JS, Hibbett DS (1994) Phylogenetic implications of generic concepts in fungi: the impact of molecular systematic studies. Mycol Helv 6:73–91Google Scholar
- Wang QM, Begerow D, Groenewald M, Liu XZ et al (2015a) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83PubMedPubMedCentralCrossRefGoogle Scholar
- Wang QM, Groenewald M, Takashima M, Theelen B et al (2015b) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53PubMedPubMedCentralCrossRefGoogle Scholar
- Wang QM, Theelen B, Groenewald M, Bai FY, Boekhout T (2014) Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia 33:41–47PubMedPubMedCentralCrossRefGoogle Scholar
- Wang QM, Yurkov AM, Göker M, Lumbsch HT et al (2015c) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:146–189Google Scholar
- Wang YZ, Zhuang JY (1998) Flora fungorum sinicorum vol. 10 Pucciniales 1. Scinece Press, Beijing (in Chinese)
- Wannathes N, Desjardin DE, Hyde KD, Perry BA, Lumyong S (2009) A monograph of Marasmius (Basidiomycota) from Northern Thailand based on morphological and molecular (ITS sequences) data. Fungal Divers 37:209–306Google Scholar
- Weiß M, Bauer R, Begerow D (2004) Spotlights on heterobasidiomycetes. In: Agerer R, Blanz P, Piepen-bring M (eds) Frontiers in Basidiomycete mycology. Germany, IHW-Verlag, München, pp 7–48Google Scholar
- Weiss M, Bauer R, Sampaio JP, Oberwinkler F (2014) Tremellomycetes and related groups. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution, the mycota VII part A. Springer, Berlin, pp 349–350Google Scholar
- White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
- Wilson AW, Binder M, Hibbett DS (2012) Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol 194:1079–1095PubMedCrossRefGoogle Scholar
- Wu G, Feng B, Xu J, Zhu XT et al (2014) Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic lineages in the fungal family Boletaceae. Fungal Divers 69:93–115CrossRefGoogle Scholar
- Wuczkowski M, Passoth V, Turchetti B, Andersson AC et al (2011) Description of Holtermanniella gen. nov., including Holtermanniella takashimae sp. nov. and four new combinations, and proposal of the order Holtermanniales to accommodate tremellomycetous yeasts of the Holtermannia clade. Int J Syst Evol Microbiol 61:680–689PubMedCrossRefGoogle Scholar
- Yang ZL (2011) Molecular techniques revolutionize knowledge of basidiomycete evolution. Fungal Divers 50:47–58CrossRefGoogle Scholar
- Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genom 14:617CrossRefGoogle Scholar
- Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek J Microb 87:311–328CrossRefGoogle Scholar
- Zhang JX, Chen Q, Huang CY, Gao W, Qu JB (2015) History, current situation and trend of edible mushroom industry development. Mycosystema 34:524–540Google Scholar
- Zhao Q, Feng B, Yang ZL, Dai YC et al (2013) New species and distinctive geographical divergences of the genus Sparassis (Basidiomycota): evidence from morphological and molecular data. Mycol Prog 12:445–454CrossRefGoogle Scholar
- Zhao RL, Karunarathna SC, Raspé O, Parra LA et al (2011) Major clades in tropical Agaricus. Fungal Divers 51:279–296CrossRefGoogle Scholar
- Zhao RL, Zhou JL, Chen J, Margaritescu S et al (2016) Towards standardizing taxonomic ranks using divergence times—a case study for reconstruction of the Agaricus taxonomic system. Fungal Divers 78:239–292CrossRefGoogle Scholar
- Zhuang JY (2003) Flora Fungorum Sinicorum Vol. 19 Pucciniales 2. Scinece Press, Beijing, 324 pp (In Chinese)
- Zhuang JY (2005) Flora fungorum sinicorum vol. 25 Pucciniales 3. Scinece Press, Beijing (in Chinese)
- Zhuang JY (2012) Flora fungorum sinicorum vol. 41 Pucciniales 4. Scinece Press, Beijing (in Chinese)
- Zundel GL (1953) The Ustilaginales of the world, vol 176. Contributions from the Department of Botany Pennsylvania State College, pp. 1–410
Funding Information
Funder Name | Grant Number | Funding Note |
---|---|---|
the National Natural Science Foundation of China |
| |
the Innovative Group of Edible Mushrooms Industry of Beijing |
| |
the Key Research and Development Program from Government of Guangxi Zhuang Autonomous Region |
| |
the Thailand Research Fund |
| |
the Natural Sciences and Engineering Research Council of Canada |
For further details log on website :
https://link.springer.com/article/10.1007/s13225-017-0381-5
No comments:
Post a Comment