Blog List

Monday 14 August 2017

Delamination Detection in Wood – Based Composites Panel Products Using Ultrasonic Techniques

Author

  1. 1.
  2. 2.
Chapter

Abstract

Wood – based composite panel products (WBCP) are manufactured from veneer, wood particles, strands or fibres bind together with different types of adhesives such as urea-formaldehyde resin, phenol-formaldehyde resin, melamine formaldehyde resin, methylene diphenyl diisocyanate or polyurethane resins. The nature and the quality of the raw material and of the adhesives determine the characteristics of the products (mechanical properties, water resistance, dimensional stability, surface quality and machinability).

References
Aicher S, Dill-Langer G, Ringger T (2002) Non-destructive detection of longitudinal cracks in glulam beams. Otto-Graf-J 13:165–182
  1. Alleyene DN, Cawley P (1992) The interaction of Lamb waves with defects. IEEE Trans Ultrasonics Feroelectric Freq Control 39:381–397CrossRefGoogle Scholar
  2. Auld BA (1973) Acoustic fields and waves in solids, vol I and II. Wiley, New YorkGoogle Scholar
  3. Aymerich F, Meili S (2000) Ultrasonic evaluation of matrix damage in impacted composite laminates. Composites: Part B 31:1–6CrossRefGoogle Scholar
  4. Bar-Cohen Y, Chimenti DE (1986) Nondestructive evaluation of composite laminates by leaky Lamb waves. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative NDE, vol l. 5B. Plenum Press, New York, pp 1199–206Google Scholar
  5. Beall FC (1987a) Fundamentals of acoustic emission and acousto-ultrasonics. In: Proceedings of 6th International Symposium Nondestructive Testing of Wood, Washington State University, U. S Pullman, WA. 1987 September 14–16, pp 3–22Google Scholar
  6. Beall FC (1987b) Acousto – ultrasonic monitoring of glueline curing. Wood Fiber Sci 19:204–214Google Scholar
  7. Bekhta PA, Niemz P, Kucera, LJ (2000) The study of sound propagation in the wood-based composite material. In: Proceeding of 12th International Symposium on Nondestructive Testing of Wood, Sopron, Hungary, Sopron, 13–15 September 2000, pp 33–41Google Scholar
  8. Berndt H, Schniewind AP, Johnson GC (1999) High resolution ultrasonic imaging of wood. Wood Sci Techn 33:185–189CrossRefGoogle Scholar
  9. Bharadwaj MC, Neeson I, Stead G (2000) Introduction to contact free ultrasonic characterization and analysis of consolidated materials. In: Proceedings of Application of NDE in powder metals. Invited paper Iowa State University, NDT net-june 2000, Vol 5, No. 06, http://www.ndt.net/article/v05n06/bhardwaj/bhardwaj.htm
  10. Bharadwaj MC (2002) Nondestructive evaluation: introduction of non-contact ultrasound. In: Schwartz M (ed) Encyclopedia of smart materials. Wiley, New York, pp 690–714Google Scholar
  11. Birks AS, Green RE Jr.(1991). Ultrasonic testing. vol 7, 2nd edn. In: McIntire P (ed) Nondestructive testing handbook. American Society for Nondestructive Testing, Columbus, OHGoogle Scholar
  12. Bjorno L (2001). Forthy years of non-linear ultrasound. Ultrasonics 40:11–17CrossRefGoogle Scholar
  13. Bland DR (1988) Wave theory and applications Oxford University Press, New YorkGoogle Scholar
  14. Blomme E, Bulcaen D, Declerc NF (2002) Recent observations with air coupled NDE in the frequency range of 650 kHz to 1.2 MHz. Ultrasonics 40:153–157CrossRefPubMedGoogle Scholar
  15. Bray D E, Stanley RK (1997) Nondestructive evaluation: a tool in design, manufacturing and service. CRC Press, New York, NYGoogle Scholar
  16. Buckley J (1999) Principles and applications of air-coupled ultrasonics. INSIGHT 40, 11:755–759Google Scholar
  17. Buckley J (2000) Air-coupled Ultrasound – A millennial review. In: Proceedings of the 15th World Conference of Non-Destructive Testing, Roma, Italy, 15–21 October 2000, Available on http://www.ndt.net/article/wcndt00/papers/idn507/idn507.htm
  18. Buckley J, Loertscher H (1999) Frequency considerations in air-coupled ultrasonic inspection. In: British Institute of Non-Destructive Testing (BINT), September 1999, UK Cheshire, Plenum Press, 41(11):696–699, Available on: http://joe.buckley.net/papers/BINDT99%20Airscan.PDF
  19. Bucur V (1992) Anisotropy characterization of structural flackboard with ultrasonic methods, Wood Fiber Sci 24(3):337–346Google Scholar
  20. Bucur V (1995) Acoustics of wood. CRC Press, Boca Raton, FL, pp 266Google Scholar
  21. Bucur V (2003a) Nondestructive characterization and imaging of wood, Springer, Heidelberg, p 354Google Scholar
  22. Bucur V (2003b) Techniques for high resolution imaging of wood structure: a review. Meas Sci Technol 14:R 91–R98CrossRefGoogle Scholar
  23. Bucur V, Ansell M P, Barlow C Y, Prithard J, Garros S, Deglise X (1998) Physical methods for characterization wood composites panel products, Holzfurchung 52(5):553–561CrossRefGoogle Scholar
  24. Burmester A (1968) On the correlation between sound velocity and density, tensile strength perpendicular to the surface and bending strength of particleboard. Holz als Roh werkstoff 113–117Google Scholar
  25. Castaings M, Cawley P (1996) The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers. J Acoust Soc Am 100(5):3070–3077CrossRefGoogle Scholar
  26. Castaings M, Cawley P, Fralow R, Hayward G (1998) Single side inspection of composite materials using air-coupled ultrasound. J Nondestructive Eval 17:37–45CrossRefGoogle Scholar
  27. Chimenti DE (1997) Guided waves in plates and their use in materials characterization. Appl Mech Rev 50(5):247–284CrossRefGoogle Scholar
  28. Dang C, Schmerr LW, Sedov A (2002) Ultrasonic transducer sensitivity and model-based transducer characterization. Research. Nondestructive Eval 14(4):203–228CrossRefGoogle Scholar
  29. Declercq NF, Degrieck J, Leroy O (2005) Bounded beam interaction with plate-edge at Lamb angle. Acta Acustica united with Acustica 91(2):326–332Google Scholar
  30. Declercq NF, Degrieck J, Leroy O (2006) Ultrasonic polar scans: numerical simulation on generally anisotropic media. Ultrasonics 45(1–4):32–39CrossRefPubMedGoogle Scholar
  31. Delsanto PP (2007) Universality of nonclassical nonlinearity. Applications to non-destructive evaluations and ultrasonics. Springer, New YorkGoogle Scholar
  32. Dill-Langer G, Bernauer W, Aicher S (2005) Inspection of glue-lines of glued-laminated timber by means of ultrasonic testing. In: 14th International Symposium on Nondestructive Testing on Wood, Hanover, Germany, pp 49–60Google Scholar
  33. Dill-Langer G, Bernauer W, Aicher A (2006) Inspection of glue-lines of glued laminated timber by means of ultrasonic testing. NDT.net 11(4) http://www.ndt.net/article/v11n04/dill-langer1/dill-langer1.htm
  34. Dimanche M, Capretti S, Del Senno M, Facaoaru I (1994) Validation of a theoretical approach for the detection of delamination in glued laminated beams. In: proceedings of 1st European symposium on nondestructive evaluation of wood, Sopron, pp 250–260Google Scholar
  35. DIN EN 1330 – 4 (2000) Non-destructive testing – terminology Part 4: terms used in ultrasonic testing. Trilingual version DIN – Deutsches Institut für Normung Beuth Verlag GmbH Berlin, BerlinGoogle Scholar
  36. Döring D, Pfleiderer K, Solodov I, Busse G (2006) Automated NDT of stiffness anisotropy with air-coupled ultrasound. ECNDT 2006, p 8. http://www.ndt.net/article/ecndt2006/doc/P123.pdf. Accessed 7 November 2009
  37. Electronic Wood Systems North America (2006) Evaluation of wood-based panel properties and delamination detection by means of ultrasound, based on current technology on online sonic measurements. See http://www.ews-usa.com and Electronic Wood Systems GmbH, Germany http://www.electronic-wood-systems.de and http://ews-usa.com/index.php?option=com_content&task=view&id. Accessed 15 March 2006
  38. Gan TH, Hutchins DA, Green RJ, Andrews MK, Harris PD (2005) Noncontact, high-resolution ultrasonic imaging of wood samples using coded chirp waveforms. IEEE Trans Ultrason Ferroelect Freq Control 52(2):280–288CrossRefGoogle Scholar
  39. Gorman MR (1991) Ultrasonic polar backscatter imaging of transverse matrix cracks, J Compos Mater 25:1499–514Google Scholar
  40. Graff K (1975) Wave motion in elastic solids. Ohio State University Press, Columbus, OHGoogle Scholar
  41. Grandia WA, Fortunko CM (1995) NDE applications of air-coupled ultrasonic transducers. In: Proceedings of IEEE International Ultrasonics Symposium, Seattle, WA, USA, pp 697–709Google Scholar
  42. Green RE Jr. (1973) Ultrasonic investigation of mechanical properties, vol 3 of treatise on materials science and technology. Academic, New YorkGoogle Scholar
  43. Green RE Jr. (1999) Application of non-contact ultrasonics to nondestructive characterization of materials. In: Green RE Jr (ed) Nondestructive characterization of materials, vol 10, Kluver Academic, Plenum Press, New York, pp 419–420Google Scholar
  44. Green RE Jr. (2004) Non-contact ultrasonic techniques. Ultrasonics 42:9–16CrossRefPubMedGoogle Scholar
  45. Grimberg R, Savin A, Lupu A, Iancu L, Rotundu C (2000) A method to determine the debonding zones in multilayer wood materials. In: Proceedings of the 15th world conference of non-destructive testing, Roma, Italy, 2000, IDN 522Google Scholar
  46. Grimberg R, Savin A, Steigmann R, Bruma A (2005) Ultrasound and visual examination of wood based products, In: The 8th international conference of the slovenian society for non-destructive testing -application of contemporary non-destructive testing in engineering, September 1–3, Portorož, Slovenia, pp 109–115Google Scholar
  47. Guo N, Cawley P (1993) The interaction of Lamb waves with delaminations in composite laminates. J Acoust Soc Am 94:2240–2246CrossRefGoogle Scholar
  48. Haberger CC, Mann RW, Baum GA (1979) Ultrasonic plate waves in paper. Ultrasonics 17:57–62CrossRefGoogle Scholar
  49. Han Jun-Bo, Cheng JC, Wang TH, Berthelot Y (1999) Mode analyses of laser- generated transient ultrasonic Lamb waveforms in a composite plate by wavelet transform. Mater Eval 57(8):837–840Google Scholar
  50. Hasenstab A, Krause M (2005) Defect localisation in wood with low frequency ultrasound echo technique. In: proceedings of 14th international symposium on nondestructive testing of wood, Hannover, pp 329–336Google Scholar
  51. Hasenstab A, Krause M, Osterloh K (2006) Testing of wooden construction elements with ultrasonic echo technique and X –ray. ECNDT 2006 –Th.2.4.1:1–8Google Scholar
  52. Hayward G, Gachagan A (1996) An evaluation of 1–3 connectivity composite transducers for air-coupled ultrasonic applications. JASA 99(4):2148–2157Google Scholar
  53. Hayward G (1997) Air-coupled NDE: constraints and solutions for industrial implementations. In: Proceeedings of IEEE Ultrasonics Symposium, Toronto, Ontario, Canada, pp 665–673Google Scholar
  54. He Y, Manful D, Bardossy A, Dill-Langer G, Ringger T, Aicher S (2004) Fuzzy logic based de-noising of ultarsound signals from non-destructive testing, Otto-Graf-J 15:103–120Google Scholar
  55. Hillger W (1992) Ultrasonic imaging of damages in CFRP-laminates. Acoust Imaging 19:575–579Google Scholar
  56. Hillger W (1997) Ultrasonic imaging of internal defects in composites. NDTnet 2(5). Paper at UTonline application workshop May ’97. http://www.ultrasonic.de/article/wsho0597/hillger/hillger.htm and http://www.ultrasonic.de/wshop/wshop_ap/wshop_ap.phtml. Accessed 12 June 2007
  57. Hosten B (1991) Reflection and transmission of acoustic plane waves on an immersed orthotropic and visoelastic solid layer. JASA 89:2745–2752Google Scholar
  58. Hosur MV, Murthy C RL, Ramamurthy TS, Shet A (1998) Estimation of impact-induced damage in CFRP laminates through ultrasonic imaging. NDT E Int 31(5):359–374CrossRefGoogle Scholar
  59. Huang W (1998) Application of Midlin plate theory to analysis of acoustic emission waveform in finite plates. In: Thompson DO, Chimenti DE (eds) Proceedings 24th Annual Symposium on Quantitative NDE, July 27–August 1, 1997, San Diego, CA, Plenum PressGoogle Scholar
  60. Huang W, Ziola SM, Dorighi JF, Gorman MR (1998) Stiffness measurement and defect detection in laminated composites by dry-coupled plate waves. In: Bossi RH, Pepper DM (eds) Proceedings of SPIE,. March 31–April 2, San Antonio, TX, USAGoogle Scholar
  61. Hurley V (2008) A successful case study of R&D, commercialization and adoption of new technology by a wood products company. In: Wood Innovation 2008 Proceedings 18–19 September, Melbourne: 182–183 (http://www.fridayoffcuts.com )
  62. Hutchins DA, Schindel DW (1994) Advances in non-contact and air – coupled transducers. In: Proceedings IEEE Ultrasonic Symposium 1994, Electronic Identifier 10.1109/ULTSYM.1994.40181,1–4 November 1994, pp 1245–1254Google Scholar
  63. Kabir M F, Araman P A (2002) Nondestructive evaluation of defects in wood pallet parts by ultrasonic scanning. In: Proceedings of 13th international symposium on nondestructive testing of wood, California, Berkley, USAGoogle Scholar
  64. Kabir MF, Schomoldt DL Shafer ME (2001) Roller-transducer scanning of wooden pallet parts for defect detection. In: Thompson DO, Chimenti DE (eds) Review of Progress in Quantitative NDE, vol 20. pp 1218–1225Google Scholar
  65. Karim MR, Mal AK, Bar-Cohen Y (1990) Determination of the elastic constants of composites through the inversion of leaky Lamb wave data. In: Thompson DO, Chimenti DE (eds) Review of Progress in Quantitative NDE, vol 9A, Plenum Press, New York, pp 109–116Google Scholar
  66. Kazemi Najafi S, Bucur V, Ebrahimi G (2005) Elastic constants of particleboard with ultrasonic technique. Mater Lett 59:2039–2042CrossRefGoogle Scholar
  67. Kazemi Najafi S, Abbasi Marasht A, Ebrahimi G (2007) Prediction of ultrasonic wave velocity in particleboard and fiberboard. J Mat Sci 42:789–793CrossRefGoogle Scholar
  68. Kazemi Najafi S, Bucur V (2002) Nondestructive characterization of particleboard with acoustic methods. In: Proceedings of 6th conference of French acoustical Soceity, April 2002, Lille, FranceGoogle Scholar
  69. Kleinschmidt H (2003) Ultra-Scan delamination detection with new power sonic resonance technology increases panel board production. In: Proceedings of 7th European panel products symposium, North Wales Conference Center, Llandudno UK - October 2003, pp 111–115Google Scholar
  70. Kolsky H (1963) Stress waves in solids. Dover, New York, NY, USAGoogle Scholar
  71. Krautkrämer J, Krautkrämer H (1990). Ultrasonic testing of materials, 4th edn. Springer, BerlinGoogle Scholar
  72. Kundu T, Potel C, de Belleval JF (2001) Importance of the near Lamb mode imaging of multilayered composite plates. Ultrasonics 39:283–290CrossRefPubMedGoogle Scholar
  73. Lionetto F ; Tarzia A ; Maffezzoli A (2007) Air-coupled ultrasound :a novel technique for monitoring the curing of thermosetting matrices. IEEE Trans Ultrason Ferroelect Freq Control 54:1437–1444CrossRefGoogle Scholar
  74. Loertscher H, Grandia B, Strycek J, Grandia W (1996) Airscan transducers, techniques and applications. NDTnet 1(9):4. http://www.ndt.net/article/qmi/qmi.htmGoogle Scholar
  75. Lynworth LC (1989) Ultrasonic measurement for process control. Theory, techniques, applications. Academic, Boston, MAGoogle Scholar
  76. Martin RW, Chimenti DE (1987) Signal processing of leaky Lamb wave data for defect imaging in composite laminates. In: Thompson DO, Chimenti DE (eds) Review of Progress in Quantitative NDE, vol 6A, Plenum Press, New York, pp 815–824Google Scholar
  77. Moran TJ, Crane RL, Andrews RJ (1985) High-resolution imaging of microcracks in composites, Mater Eval 43:536–540Google Scholar
  78. Musgrave MJP (1970) Crystal acoustics. Holden-Day, San Francisco, CAGoogle Scholar
  79. Nayeh AH (1995) Wave propagation in layered anisotropic media: with applications to composites. Elsevier, New YorkGoogle Scholar
  80. Niemz P, Kucera L J, Poblete H, Baradit E(1996) On the application sound velocity to the determination of bending strength of particleboard. In: Proceedings of 10th international symposium on nondestructive testing of wood, Lausanne, SwitzerlandGoogle Scholar
  81. Niemz P, Kucera L J, Schob M, Scheffler M (1999) Possibility of defect detection in wood with ultrasound. (Experimentelle Untersuchungen zur Erkennung von Defekten in Holz mittels Ultraschal). Holz als Roh und Werk 57:96–102CrossRefGoogle Scholar
  82. Neuenschwander J, Niemz P, Kucera LJ (1997) Orientierende Untersuchungen zur Anwendung der bildgebenden Ultraschallprüfug zur Fehlererkennung in Holz. Holz als Roh-und Werkst 55:339–340CrossRefGoogle Scholar
  83. Olympus, Panametrics (2009) http://www.olympus-ims.com/data/File/panametrics-UT.en.pdf. Accessed 16 June 2009
  84. Papadakis EP (1999) Ultrasonic instruments and devices. Reference for modern instrumentation, techniques and technology. Academic, San Diego, CAGoogle Scholar
  85. Papadakis EP, Kovacs BV (1980) Theoretical model for comparison of sonic-resonance and ultrasonic velocity for assuring quality in instant nodular iron parts. Mater Eval 38(6):25–30Google Scholar
  86. Potel C, de Belleval KF (1993) Propagation in a periodically anisotropic multilayered media. J Acoust Soc Am 93(5):2669–2677CrossRefGoogle Scholar
  87. Potel C, de Belleval JF, Genay E, Gatignol Ph (1996) Behavior of Lamb waves and multilayered Rayleigh waves in an anisotropic periodically multilayered medium. Application to the long-wave length domain, Acustica-Acta Acustica 82(5):738–748Google Scholar
  88. Potel C, Leduc D, Morvan B et al. (2008) Lamb wave attenuation in a rough plate. I. Analytical and experimental results in an anisotropic plate. J Appl Phys 104:074908–074908–10CrossRefGoogle Scholar
  89. Rogers WP (1995) Elastic property measurement using Rayleigh-Lamb waves. Res Nondestruct Eval 6:185–208Google Scholar
  90. Rodgers JM, Green AT, Borup SW (1991) Acousto-ultrasonic measurement of internal bond strength in composite wood products. Mater Eval 49(5):566–571Google Scholar
  91. Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press, CambridgeGoogle Scholar
  92. Rose JL, Zhu W, Cho Y (1992) Boundary element modelling for guided wave reflection and transmission factor analyses in defect classification. IEEE Ultrason Proc Symp 1:885–888Google Scholar
  93. Rose WR, Rokhlin SI, Alder L (1987) Evaluation of anisotropic properties of graphite – epoxy composites using Lamb waves. In: Review of Progress in Quantitative Nondestructive Evaluation, vol 6B, Plenum Press, New York, pp 1111–1118Google Scholar
  94. Schindel DW, Hutchins DA, Zou L, Sayer M (1995) The design and characterization of micromachined air-coupled capacitive transducers. IEEE Trans Ultrason Ferroelect Freq Contr 42:42–50CrossRefGoogle Scholar
  95. Schmerr LW Jr (1998) Fundamentals of ultrasonic nondestructive evaluation, a modelling approach. Plenum Press, New YorkGoogle Scholar
  96. Schmoldt D L, Ross RJ, Nelson R M (1996) Ultrasonic defect detection in wooden pallet parts for quality sorting. SPIE Proc Series 2944:285–295CrossRefGoogle Scholar
  97. Solodov IY (1998) Ultrasonics of non-linear contacts: propagation, reflection and NDE applications. Ultrasonics 36:383–390CrossRefGoogle Scholar
  98. Solodov IY (2001) CAN: an example of nonclassical acoustic nonlinearity in solids. Ultrasonics 40:621–624CrossRefGoogle Scholar
  99. Solodov I, Strössel R, Busse G (2004a) Material characterization and NDT using focused slanted transmission mode of air-coupled ultrasound. Res NonDestruct Eval 15:1–21CrossRefGoogle Scholar
  100. Solodov I, Pfleiderer K, Busse G (2004b) Nondestructive characterization of wood by monitoring of locall elastic anisotropy and dynamic nonlinearity. Holzforschung 58:504–510CrossRefGoogle Scholar
  101. Solodov I, Busse G (2006) New advances in air-coupled ultrasonic NDT using acoustic mode conversion. ECNDT 2006 Berlin – We.2.4.2 http://www.ultrasonic.de/article/ecndt2006/doc/We.2.4.2.pdf. Accessed 7 January 2007
  102. Solodov I Y, Doering D, Pfleiderer K, Busse G (2006a) Linear and nonlinear NDE using air-coupled Lamb waves. AIP Conf Proc 820:1492CrossRefGoogle Scholar
  103. Solodov I Y, Pfleiderer K, Gerhard H, Predak S, Busse G (2006b) New opportunities for NDE with air-coupled ultrasound NDT Int 39:176–183Google Scholar
  104. Stiffler RC (1986) Wave propagation in composite plates. Ph.D. Dissertation, College of Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VAGoogle Scholar
  105. Smith BT, Heyman JS, Buoncristiani AM, Blodgett ED, Miller JG, Freeman SM (1989) Correlation of the deply technique with ultrasonic imaging of impact damage in graphite-epoxy composites. Mater Eval 47(12):1408–1416Google Scholar
  106. Steiner KV, Eduljee RF, Huang X, Gillespie JW Jr (1995) Ultrasonic NDE techniques for the evaluation of matrix cracking in composite laminates. Compos Sci Technol 53:193–198CrossRefGoogle Scholar
  107. Stössel R, Krohn N, Pfleider K, Busse G (2001) Air-coupled ultrasound inspection of various materials. Ultrasonics 40:159–163CrossRefGoogle Scholar
  108. Stössel R, Krohn N, Busse G (2000) Measurements with air-coupled ultrasound. In: Proceedings of 7th Internat. Congres on Sound and Vibration, July 4–7, Garmish – Partenkirchen vol II: 795–802 and Acoust Phys J (2002) 48(3):159–163Google Scholar
  109. Stössel R (2004) Air-couples ultrasound inspection as a new non-destructive testing tool for quality assurance. PhD Thesis, University of Stuttgart, GermanyGoogle Scholar
  110. Strycek JO, Loertscher H (1999) Ultrasonic air-coupled inspection in advanced material. NDT.net 4:46–50Google Scholar
  111. Strycek JO, Grandia WA, Loertscher H (1997) Wave modes produced by air coupled ultrasound. NDTnet May 1997, 2(5). http://www.ndt.net/article/wsho0597/qmi2/qmi2.htm. Accessed 10 September 2008
  112. Tang B, Henneke EG II (1989a) Lamb wave monitoring of axial stiffness reduction of laminated composite plates. Mater Eval 47(8):928–932Google Scholar
  113. Tang B, Henneke EG II (1989b) Long wavelength approximation for Lamb wave characterization of composites laminates. Res Nondestructive Eval 1:51–64Google Scholar
  114. Tang B, Henneke EG II, Stiffler RC (1988) Low frequency flexural wave propagation in laminated composite plates. In: Duke JC Jr (ed) Acousto – ultrasonics: theory and application. Plenum Press, New York, NY, pp 45–65Google Scholar
  115. Tucker BJ, Bender DA, Pollock DG, Wolcott MP (2003a) Ultrasonic plate waves evaluation of natural fiber composite panels. Wood Fiber Sci 35:266–281Google Scholar
  116. Tucker BJ, Bender DA (2003) Continuous ultrasonic inspection of extruded wood-plastic composites. Forest Products J 53(6):27–32Google Scholar
  117. Tucker BJ (2001) Ultrasonic plate waves in wood-based composite panels. Ph. D Dissertation, Department of Civil and Environmental Engineering, Washington State University, p 112Google Scholar
  118. Ty Ch (1989) Modulus of elasticity of particleboard determined by nondestructive testing methods. J Agric For 38(2):151–164Google Scholar
  119. Viktorov I A (1967) Rayleigh and Lamb waves: physical theory and applications. Plenum Press, New York, NYGoogle Scholar
  120. Vun RY (2003) Ultrasonic characterization of engineering performance of oriented strandboard. Louisiana State University – etd (electronic thesis and dissertations), http://etd.lsu.edu/docs/available/etd-0708103-163628/
  121. Vun RY, Wu Q, Bhardwaj MC, Stead G (2003) Ultrasonic characterization of structural properties of oriented strandboard: a comparison of direct-contact and non-contact methods. Wood Fiber Sci 35(3):381–396Google Scholar
  122. Vun RY, Wu Q, Monlezun CJ (2003) Ultrasonic characterization of horizontal density variations in oriented strandboard. Wood Fiber Sci 35(3):482–498Google Scholar
  123. Vun RY, Hoop C, Beall FC (2005) Monitoring critical defects of creep rupture in oriented strandboard using acoustic emission: incorporation of EN300 standard. Wood Sci Techn 39(3):199–214CrossRefGoogle Scholar
  124. Vun RY, Hoover K, Janowiak J, Bhardwaj M (2008) Calibration of non-contact ultrasound as an online sensor for wood characterization: effects of temperature, moisture, and scanning direction. Appl Physics A Mat Sci 90(1):191–196CrossRefGoogle Scholar
  125. Vun YR, WuQ, Bhardwaj M, Stead G (2000) Through – thickness ultrasonic transmission properties of oriented strandboard. In: Proceedings of 12th international symposium on nondestructive testing of wood, Sopron, pp 76–68Google Scholar
  126. Wang CS, Wu F, Chang FK (2001) Structural health monitoring from fiber reinforced composites to steel reinforced concrete. Smart Mat Struct 10:548–552CrossRefGoogle Scholar
  127. Wooh SC, Daniel IM (1990) Enhancement techniques for ultrasonic nondestructive evaluation of composite materials. J Eng Mat Tech 112:175–182CrossRefGoogle Scholar
  128. Wooh SC, Daniel IM (1994) Three-dimensional ultrasonic imaging of defects and damage in composite materials. Mater Eval 52(10):1199–1206Google Scholar
  129. Wooh SC, Wei C (1999) A high-fidelity ultrasonic pulse-echo scheme for detecting delaminations in composite laminates. Composites: Part B 30:433–441CrossRefGoogle Scholar
  130. Žukauskas E, Cicėnas V, Kažys R (2005) Application of air–coupled ultrasonic technique for sizing of delamination type defect in multilayered materials. Ultragarsas 54(1):7–11Google Scholar
For further details log on website :
https://link.springer.com/chapter/10.1007/978-90-481-9550-3_16

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...