Blog List

Wednesday 13 July 2016

Fraser fir somatic embryogenesis: high frequency initiation, maintenance, embryo development, germination and cryopreservation

Author

  • Gerald S. Pullman 
  • Katie Olson
  • Taylor Fischer
  • Ulrika Egertsdotter
  • John Frampton
  • Kylie Bucalo

Abstract



Fraser fir (Abies fraseri [Pursh] Poir.) is a coniferous species native to the Southern Appalachian Mountains of the eastern United States. The species has high economic and recreational value but is vulnerable to extinction due to introduced pests and global warming. Somatic embryogenesis technology may assist in the clonal production of desired lines of Christmas trees and safekeeping of rare and valuable germplasm via cryopreservation. We have developed a highly effective medium for initiation of embryogenic tissue from immature or mature seeds of Fraser fir that contains AL salts (Kvaalen et al., in Can J For Res 35:1053–1060, 2005), brassinolide, paclobutrazol and abscisic acid. Using dominant embryos attached to the female gametophyte placed on medium, the highest initiation percentages occurred with precotyledonary stage 3 embryos. When tested with 11 high-value open-pollinated families over 5 years, initiation tests for medium containing brassinolide and paclobutrazol averaged 6–62 % initiation. A maintenance medium was developed that contained AL salts and 1.1 mg L−1 BAP and was able to capture approximately 50 % of the initiations. A maturation medium was developed containing AL salts, maltose, polyethylene glycol 8000 and abscisic acid that produced cotyledonary embryos capable of germination to produce a root and shoot. Culture cryopreservation and retrieval was also demonstrated.

References

  1. Aitken-Christie J, Parkes BD (1996) Improved embryogenesis process for initiation and maturation. International application under the patent cooperation treaty (PCT). WO 96/37096, international publication date: 28 November 1996
  2. Aronen TS, Krajnakova J, Haggman HM, Ryynanen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172CrossRef
  3. Aurich C, Rupps A, Zoglauer K (2014) Embryo maturation ability is subjected to line ageing—a way to assure the quality of somatic embryos of Nordmann fir. In: Park, YS, Bonga JM (eds) Proceedings of the 3rd international conference of the IUFRO unit 2.09.02 on “Woody plant production integrating genetic and vegetative propagation technologies.” September 8–12, 2014. Vitoria-Gasteiz, Spain, pp 127–128. Published online: http://​www.​iufro20902.​org. Accessed 19 May 2015
  4. Becwar MR, Pullman GS (1995) Somatic embryogenesis in loblolly pine (Pinus taeda L.). In: Mohan-Jain S, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, Vol. 3-Gymnosperms. Kluwer, The Netherlands, pp 287–301
  5. Breton D, Harvengt L, Trontin JF, Bouvet A, Favre JM (2006) Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tissue Organ Cult 87:95–108CrossRef
  6. Cairney J, Xu N, Pullman GS, Ciavatta VT, Johns B (1999) Natural and somatic embryo development in loblolly pine: gene expression studies using differential display and cDNA arrays. Appl Biochem Biotech 77–79:5–17CrossRef
  7. Cairney J, Xu N, MacKay J, Pullman G (2000) Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev Biol Plant 36:155–162CrossRef
  8. De Silva V, Bostwick D, Burns KL, Oldham CD, Skryabina A, Sullards MC, Wu D, Zhang Y, May SW, Pullman GS (2008) Isolation and characterization of a molecule stimulatory to growth of early-stage somatic embryos from early-stage female gametophyte tissue of loblolly pine. Plant Cell Rep 27:633–646CrossRefPubMed
  9. Egertsdotter U, Pullman GS (2003) Clonal propagation of Fraser fir through somatic embryogenesis. In: Sixth international christmas tree research & extension conference. Sept 14–19, 2003, Hendersonville, NC. Poster
  10. Fenning TM, Walter C, Gartland KMA (2008) Forest biotech and climate change. Nature Biotech 26:615–617CrossRef
  11. Guevin TG, Kirby EG (1997) Induction of embryogenesis in cultured mature zygotic embryos of Abies fraseri(Pursh) Poir. Plant Cell Tissue Organ Cult 49:219–222CrossRef
  12. Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179CrossRefPubMed
  13. Gupta PK, Pullman GS (1991) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation. US Patent 5036007, 30 July 1991
  14. Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300CrossRefPubMed
  15. Handley L III (1997) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. US Patent 5,677,185. October 14, 1997
  16. Handley L III (1999) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. US Patent 5,856,191. January 5, 1999
  17. Hibbert-Frey H, Frampton J, Blazich FA, Hinesley LE (2010) Grafting Fraser fir (Abies fraseri): effect of grafting date, shade, and irrigation. HortSci 45:617–620
  18. Hibbert-Frey H, Frampton J, Blazich F, Hundley D, Hinesley E (2011) Grafting Fraser fir: effect of scion origin (crown position and branch order). HortSci 46:91–94
  19. Hinesley E, Frampton J (2002) Grafting Fraser fir onto rootstocks of selected Abies species. HortSci 37:815–818
  20. Hristoforoglu K, Schmidt J, Bolhar-Nordenkampf H (1995) Development and germination of Abies alba somatic embryos. Plant Cell, Tissue Organ Cult 40:277–284CrossRef
  21. IUCN (2009) IUCN red list of threatened species. Version 2014.3. www.​iucnredlist.​org. Accessed 19 May 2015
  22. Jasik J, Salajova T, Kormutak A, Salaj J (1999) Somatic embryogenesis in hybrid firs. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic, The Netherlands, pp 505–523CrossRef
  23. Kapik RH, Dinus RJ, Dean JF (1995) Abscisic acid and zygotic embryogenesis in Pinus taeda. Tree Physiol 15:485–490CrossRefPubMed
  24. Kim YW, Newton R, Frampton J, Han KH (2009) Embryogenic tissue initiation and somatic embryogenesis in Fraser fir (Abies fraseri [Pursh] Poir.). In Vitro Cell Dev Biol Plant 45:400–406CrossRef
  25. Kong L, Attree SM, Evans DE, Binarova P, Yeung EC, Fowke LC (1999) Somatic embryogenesis in white spruce: studies of embryo development and cell biology. In: Mohan-Jain S, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer, Dordrecht, pp 1–28CrossRef
  26. Korecky J, Vitamvas J (2011) Somatic embryogenesis of the hybrid Abies cilicica × Abies cephalonica. J For Sci 57:401–408
  27. Krajnakova J, Haggman H, Gomory D (2009) Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tiss Organ Cult 96:251–262CrossRef
  28. Krajnakova J, Sutela S, Aronen T, Gomory D, Vianello A, Haggman H (2011) Long-term cryopreservation of Greek fir embryogenic cell lines: recovery, maturation and genetic fidelity. Cryobiology 63:17–25CrossRefPubMed
  29. Kvaalen H, Daehlen OG, Rognstad AT, Gronstad B, Egertsdotter U (2005) Somatic embryogenesis for plant production of Abies lasiocarpa. Can J For Res 35:1053–1060CrossRef
  30. Liao YK, Juan I-P (2015) Improving the germination of somatic embryos of Picea morrisonicola Hayata: effects of cold storage and partial drying. J For Res. doi:10.​1007/​s10310-014-0445-2
  31. Ma X, Bucalo K, Determann RO, Cruse-Sanders JM, Pullman GS (2012) Somatic embryogenesis, plant regeneration and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. In Vitro Cell Dev Biol Plant 48:324–334CrossRef
  32. Malabadi R, Nataraja K (2007) 24-Epibrassinolide induces somatic embryogenesis in Pinus wallichiana A.B. Jacks. J Plant Sci 2:171–178CrossRef
  33. McManamay RH, Resler LM, Campbell JB, McManamayl RA (2011) Assessing the impacts of balsam woolly adelgid (Adelge piceae Ratz.) and anthropogenic disturbance on the stand structure and mortality of Fraser fir [Abies fraseri (Pursh) Poir.] in the Black Mountains, North Carolina. Castanea 76:1–19CrossRef
  34. Misson JP, Druart P, Panis B, Watillon B (2006) Contribution to the study of the maintenance of somatic embryos of Abies nordmanniana LK: culture media and cryopreservation method. Propag Ornam Plants 6:17–23
  35. Nørgaard JV, Krogstrup P (1995) Somatic embryogenesis in Abies spp. In: Mohan JS, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 3. Kluwer, The Netherlands, pp 341–355CrossRef
  36. Norgaard JV, Baldursson S, Krogstrup P (1993) Genotypic differences in the ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Genet 42:93–97
  37. North Carolina Department of Agriculture (2012) North Carolina Department of Agriculture and Consumer Service Marketing: Christmas Trees. http://​www.​ncagr.​gov. Accessed 19 May 2015
  38. Pullman GS, Bucalo K (2011) Pine somatic embryogenesis using zygotic embryos as explants. In: Thorpe T, Yeung E (eds) Plant embryo culture: methods and protocols. Humana Press, New York, pp 267–291CrossRef
  39. Pullman GS, Bucalo K (2014) Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New For 45:353–377CrossRef
  40. Pullman GS, Johnson S (2002) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates. Ann For Sci 59:663–668CrossRef
  41. Pullman GS, Johnson S (2009) Osmotic measurements in whole megagametophytes and embryos of loblolly pine (Pinus taeda L.) during seed development. Tree Physiol 29:819–827CrossRefPubMed
  42. Pullman GS, Skryabina A (2007) Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers. Plant Cell Rep 26:873–887CrossRefPubMed
  43. Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. TAPPI R&D division biological sciences symposium. TAPPI Press, Atlanta, pp 31–34
  44. Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003a) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758PubMed
  45. Pullman GS, Namjoshi K, Zhang Y (2003b) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation with abscisic acid and silver nitrate. Plant Cell Rep 22:85–95CrossRefPubMed
  46. Pullman GS, Zhang Y, Phan B (2003c) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22:96–104CrossRefPubMed
  47. Pullman GS, Olson K, Egertsdotter U (2004) Somatic embryogenesis of Fraser fir (Abies fraseri). 2004 IUFRO joint conference of division 2—forest genetics and tree breeding in the age of genomics: progress and future, November 1–5, 2004, Charleston, SC, #27. Poster
  48. Pullman GS, Johnson S, Van Tassel S, Zhang Y (2005a) Somatic embryogenesis in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii): improving culture initiation and growth with MES pH buffer, biotin, and folic acid. Plant Cell Tissue Organ Cult 80:91–103CrossRef
  49. Pullman GS, Mein J, Johnson S, Zhang Y (2005b) Gibberellin inhibitors improve embryogenic tissue initiation in conifers. Plant Cell Rep 23:596–605CrossRefPubMed
  50. Pullman GS, Chopra R, Chase K-M (2006) Loblolly pine (Pinus taeda L.) somatic embryogenesis: improvements in embryogenic tissue initiation by supplementation of medium with organic acids, Vitamins B12 and E. Plant Sci 170:648–658CrossRef
  51. Pullman GS, Johnson S, Bucalo K (2009) Douglas fir embryogenic tissue initiation. Plant Cell Tissue Organ Cult 96:75–84CrossRef
  52. Pullman GS, Zeng X, Copeland-Kemp B, Crockett J, Lucrezi J, May SW, Bucalo K (2015) Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents. Tree Physiol 35:209–224CrossRefPubMed
  53. Rajbhandari N, Stomp A (1997) Embryogenic callus induction in Fraser fir. HortSci 32:737–738
  54. Rédei GP (1974) ‘Fructose effect’ in higher plants. Ann Bot 38:287–297
  55. Rosier CL, Frampton J, Goldfarb B, Blazich FA, Wise FC (2004) Growth stage, auxin type, and concentration influence rooting stem cuttings of Fraser fir. HortSci 39:1397–1402
  56. Rosier C, Frampton J, Goldfarb B, Blazich FA, Wise FC (2005) Effects of stumping height, auxin and crown position on the rooting of Fraser fir cuttings. HortSci 40:771–777
  57. Salaj T, Salaj J (2003/2004) Somatic embryo formation on mature Abies alba × Abies cephalonica zygotic embryo explants. Biologia Plant 47:7–11
  58. Salaj T, Vookova B, Salaj J (2005) Protocols for somatic embryogenesis in hybrid firs. In: Jain SM, Gupta PK (eds) Protocols for somatic embryogenesis in woody plants. Springer, The Netherlands, pp 483–496CrossRef
  59. Salaj T, Matusikova I, Panis B, Swennen R, Salaj J (2010) Recovery and characterization of hybrid firs (Abies alba × A. cephalonicaAbies alba × A. numidica) embryogenic tissue after cryopreservation. CryoLetters 31:206–217PubMed
  60. Salajova T, Jasik J, Kormutak A, Salaj J, Hakman I (1996) Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies cephalonica, and Abies alba × Abies numidica). Plant Cell Rep 15:527–530PubMed
  61. Schuller A, Reuther G, Geier T (1989) Somatic embryogenesis from seed explants of Abies alba. Plant Cell Tissue Organ Cult 17:53–58
  62. Silva AMN, Kong XL, Parkin MC, Cammack R, Hider RC (2009) Iron(III) citrate speciation in aqueous solution. Dalton Trans 2009:8616–8625CrossRef
  63. Timmis R (1998) Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis. Biotechnol Prog 14:156–166CrossRef
  64. Van Winkle SC, Pullman GS (2003) The combined impact of pH and activated carbon on the elemental composition of a liquid conifer embryogenic tissue initiation medium. Plant Cell Rep 22:303–311CrossRefPubMed
  65. Vondrakova Z, Eliasova K, Fischerova L, Vagner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6:587–596. doi:10.​2478/​s11535-011-0035-7
  66. Vookova B, Komutak A (2001) Effect of sucrose concentration, charcoal, and indole-3-butyric acid on germination of Abies numidica somatic embryos. Biologia Plant 44:181–184CrossRef
  67. Vookova B, Kormutak A (2009) Improved plantlet regeneration from open-pollinated families of Abies alba trees of Dobroc primeval forest and adjoining managed stand via somatic embryogenesis. Biologia 64:1136–1140CrossRef
  68. Webster FB, Roberts DR, McInnis SM, Sutton BCS (1990) Propagation of interior spruce by somatic embryogenesis. Can J For Res 20:1759–1765CrossRef
  69. Welty DE (2000) Method for storing and improving the survival rate of conifer somatic embryo germinants. US Patent 6134830, issued 24 October, 2000
  70. Wu D, Sullards MC, Oldham DD, Gelbaum L, Pullman GS, May SW (2012) Myo-inositol hexakisphosphate, isolated from female gametophyte tissue of loblolly pine, inhibits growth of early-stage somatic embryos. New Phytolo 193:313–326CrossRef
  71. Xu N, Johns B, Pullman GS, Cairney J (1997) Rapid and reliable differential display from minute amounts of tissue: mass cloning and characterization of differentially expressed genes from loblolly pine embryos. Plant Mol Biol Rep 15:377–391CrossRef

For further details log on website :
http://link.springer.com/article/10.1007/s11056-016-9525-9

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...