Blog List

Wednesday, 13 July 2016

Morpho-physiological response to drought of progenies of Pinus taeda L. contrasting in mean growth rate

Author

  • Nardia Maria Lujan Bulfe 
  • Maria Elena Fernández

Abstract

Potential trade-offs between growth and water stress resistance in Pinus taeda L. families, and the ecophysiological processes involved were evaluated. Families of high (HG) and low (LG) growth rate were subject to moderate and severe water stress. Families only differed in growth under the high water availability condition (control treatment), declining exponentially to similar values in all families under drought. HG families presented higher absolute growth but lower relative growth than LG families. Hydraulic conductivity of branches decreased at high air saturation deficit (D) even with high soil water content due to high vulnerability to cavitation (mean P 50 = 1.7 MPa) and poor stomatal control of water potential in all families (which was even lower in LG). LG families presented higher carbon fixation capacity (per unit leaf area) but this could not be reflected in absolute growth due to their higher biomass allocation to roots compared to HG families. HG2 family allocated more biomass to leaves than the other families, increasing its whole capacity of C fixation. HG1 family had a differential allocation to the stem, probably increasing whole hydraulic conductance and capacitance, and therefore having an efficient way of providing water to the leaves. Our results does not support the hypothesis of a tradeoff between growth and drought resistance in Pinus taeda, but that there are different combinations of traits, as those of HG families, leading to high absolute growth when soil water availability is high, and low growth—but similar to that of LG families—under water deficit conditions.

References

  1. Apinwall J, King JS, McKeand SE (2013) Productivity differences among loblolly pine genotypes are independent of individual-tree biomass partitioning and growth efficiency. Trees 27:533–545CrossRef
  2. Aspinwall MJ, King JS, McKeand SE, Domec JC (2011a) Leaf-level gas exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of constrasting inherent genetic variation. Tree Physiol 31:78–91CrossRefPubMed
  3. Aspinwall MJ, King JS, McKeand SE, Bullock BP (2011b) Genetic effects on stand-level uniformity and above- and belowground dry mass production in juvenile loblolly pine. For Ecol Manag 262:609–619CrossRef
  4. Baker JB, Langdon OG (2012) Pinus taeda L. Reporte USFS http://​www.​na.​fs.​fed.​us/​pubs/​silvics_​manual/​Volume_​1/​pinus/​taeda.​htm. Accessed 10 Oct 2012
  5. Birk EM, Vitousek PM (1986) Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology 67:69–79CrossRef
  6. Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants-an economic analogy. Annu Rev Ecol Evol Syst 16:363–392CrossRef
  7. Bongarten BC, Teskey RO (1987) Dry weight partitioning and its relationship to productivity in loblolly pine seedlings from seven sources. For Sci 33:255–267
  8. Bréda N, Huc R, Granier A, Dreyer E (2011) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRef
  9. Brodribb TJ, Holdbrook NM, Hill RS (2005) Seedling growth in conifers and angiosperms: impacts of contrasting xylem structure. Aust J Bot 53:749–755CrossRef
  10. Burgess SS, Pittermann OJ, Dawson TE (2006) Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D. Don) crowns. Plant Cell Environ 29:229–239CrossRefPubMed
  11. Cannell MGR, Bridgwater FE, Greenwood MS (1978) Seedling growth rate, water stress responses and root-shoot relationships related to eight-year volumes among families of Pinus taeda L. Silvae Genet 27:237–248
  12. Domec JC, Gartner BL (2003) Relationship between growth rates and xylem hydraulic characteristics in young, mature and old-growth ponderosa pine trees. Plant Cell Environ 26:471–483CrossRef
  13. Domec JC, Lachenbruch B, Meizner FC (2006) Bordered pit structure and function determine spatial Patterns of air-seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. Am J Bot 93:1588–1600CrossRefPubMed
  14. Ewers BE, Oren R, Sperry JS (2000) Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ 23:1055–1066CrossRef
  15. Faustino L, Bulfe N, Pinazo M, Goya J, Martiarena R, Knebel O, Graciano C (2011) Crecimiento inicial de Pinus taeda L. en suelo pedregoso de la provincia de Misiones, en respuesta a la fertilización con P y N. Yvyrareta 18:52–57
  16. Faustino LI, Bulfe NML, Pinazo MA, Monteoliva SE, Graciano C (2013) Dry partitioning and hydraulic traits in Young Pinus taeda trees fertilized with nitrogen and phosphorus in a subtropical area. Tree Physiol 33:241–251CrossRefPubMed
  17. Fernández ME, Gyenge J, Graciano C, Varela S, Dalla Salda G (2010) Conductancia y conductividad hidráulica. In: Fernández ME, Gyenge J (eds) Técnicas de medición en Ecofisiología vegetal. Concepto y procedimientos, Buenos Aires, pp 53–68
  18. Gebremedhin MT (2003) Variation in growth, water relation, gas exchange, and stable carbon isotope composition among clones of lobollly pine (Pinus taeda L.) under water stress. Dissertation, University of Florida
  19. Gonzalez-Beneque CA, Martin TA (2010) Water availability and genetic effect on water relations of loblolly pine (Pinus taeda) stand. Tree Physiol 30:376–392CrossRef
  20. Green TH, Mitchell RJ, Gjerstad DH (1994) Effect of the nitrogen on the response of loblolly pine to drought. New Phytol 128:145–152CrossRef
  21. Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evolut Syst 4:97–115CrossRef
  22. Hacke UG, Sperry JS, Ewers BE, Ellsworth DS, Schäfer KVR, Oren R (2000) Influence of soil porosity on water use in Pinus taeda. Oecologia 124:495–505CrossRef
  23. Hoefs J, Schidlowski M (1967) Carbon isotope composition of carbonaceous matter from the Precambrian of the Wirwatersrand system. Science 155:1096–1098CrossRefPubMed
  24. Hulme M, Sheard N (1999) Escenarios de Cambio Climático para Argentina. Unidad de Investigación Climática, Norwich
  25. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80 % acetone. Plant Physiol 77:483–485CrossRefPubMedPubMedCentral
  26. IPCC (2007) Cambio climático 2007: Informe de síntesis. Contribución de los Grupos de trabajo I, II y III al Cuarto Informe de evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático [Equipo de redacción principal: Pachauri RK, Reisinger A (directores de la publicación)]. IPCC, Ginebra, Suiza
  27. Kondoh S, Yahata H, Nakashizuka T, Kondoh M (2006) Interspecific variation in vessel size, growth and drought tolerance of broad-leaved trees in semi-arid regions of Kenya. Tree Physiol 26:899–904CrossRefPubMed
  28. MAGyP (2013) Argentina: Plantaciones forestales y gestión sostenible
  29. Martiarena RA, Frangi JM, Von Wallis A, Arturi MF, Fassola HE, Fernández RA (2014) Propiedades del suelo y sus relaciones con el IS en plantaciones de Pinus taeda L. en la Mesopotamia Argentina. AUGMDOMUS 6:47–65
  30. Myers BJ (1988) Water stress integral—a link between short-term and long-term growth. Tree Physiol 4:315–324CrossRefPubMed
  31. Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schäfer KVR (1999) Survey and synthesis of intra and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526CrossRef
  32. Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593CrossRefPubMed
  33. Panarello HO (1987) Relaciones entre isótopos de elementos livianos para estudiar procesos ambientales y paleotemperaturas. PhD thesis, Universidad de Buenos Aires, FCEN, Buenos Aires, Argentina, p 105
  34. Pita P, Cañas I, Soria F, Ruiz F, Toval G (2005) Use of physiological traits in tree breeding for improved yield in drought-prone environments. The case of Eucalyptus globulus. Investig Agrar Sist Recur For 14:383–393CrossRef
  35. Rice KJ, Matzner SL, Byer W, Brown JR (2004) Patterns of tree dieback in Queensland, Australia: the importance of drought stress and the role of resistance to cavitation. Oecologia 139:190–198CrossRefPubMed
  36. Sperry JS, Pockman WT (1993) Limitation of transpiration by hydraulic conductance and xylem cavitation in Betula occidentalis. Plant Cell Environ 16:279–287CrossRef
  37. Sperry JS, Meinzer FC, McCulloh KA (2008) Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ 31:1–14CrossRef
  38. Tang Z, Chambers JL, Sword MA, Barnett JP (2003) Seasonal photosynthesis and water relations of juvenile loblolly pine relative to stand density and canopy position. Trees 17:424–430CrossRef
  39. Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432CrossRef
  40. Team RC (2014) R: a language and environment for statistical computing. R: Foundation for Statistical Computing, Viena
  41. Teskey RO, Bongarten BC, Cregg BM, Dougherty PM, Hennessey TC (1987) Physiology and genetics of tree growth response to moisture and temperature stress: an examination of the characteristics of loblolly pine (Pinus taeda L.). Tree Physiol 3:41–61CrossRefPubMed
  42. Tyree MT, Ewers FW (1991) Tansley review no 34. The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360CrossRef
  43. Van den Driessche R (1992) Absolute and relative growth of Douglas-fir seedling of different sizes. Tree Physiol 10:141–152CrossRef
  44. Wang T, Aitken SN, Kavanagh KL (2003) Selection for improved growth and wood quality in lodgepole pine: effects on phenology, hydraulic architecture and growth of seedlings. Trees 17:269–277
  45. Zar JH (1999) Biostadistical analysis. Prentice Hall press, New Jersey
  46. Zhang JW, Feng Z, Cregg BM, Schumann CM (1997) Carbon isotopic composition, gas exchange, and growth of three populations of ponderosa pine differing in drought tolerance. Tree Physiol 17:461–466CrossRefPubMed

For further details log on website :
http://link.springer.com/article/10.1007/s11056-016-9524-x

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...