Blog List

Thursday, 13 October 2016

Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood

Published Date
Originals Originalarbeiten
DOI: 10.1007/s00107-009-0379-0

Cite this article as: 
Moubarik, A., Allal, A., Pizzi, A. et al. Eur. J. Wood Prod. (2010) 68: 427. doi:10.1007/s00107-009-0379-0

Author and affiliations 

  1. 1.SylvadourIUT des Pays de l’AdourMont de MarsanFrance
  2. 2.IPREM-EPCP (UMR 5254)Université de Pau et des Pays de l’AdourPauFrance
  3. 3.ENSTIB-LERMABNancy UniversityEpinalFrance

  • Amine Moubarik
    • 1
  • Ahmed Allal
    • 2
  • Antonio Pizzi
    • 3
  • Fatima Charrier
    • 1
  • Bertrand Charrier
    • 1

  • Amine Moubarik
  • Ahmed Allal
  • Antonio Pizzi
  • Fatima Charrier
  • Bertrand Charrier

  • Abstract
    This study investigated the physical properties (rheological and thermogravimetric analysis) of cornstarch-tannin adhesives and the mechanical properties (dry tensile strength and 3-point bending strength) of plywood made using cornstarch-tannin adhesives. This adhesive was evaluated for its utility in interior plywood manufacture. The optimum cure temperature and cure time of cornstarch-tannin adhesives were 170°C and 4 min, respectively. Plywood bonded with formaldehyde-free cornstarch-tannin adhesive exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. It was found that cornstarch-tannin panels which do not contain formaldehyde and with an emission equal to that of heated but unbound wood can be obtained by the use of hexamethylenetetramine (hexamine) as hardener.
    The work has indicated that an environmentally friendly wood adhesive can be prepared from a natural renewable resource (cornstarch and wattle tannin) for bonding interior-type plywood.
    Beschreibung eines neuen formaldehydfreien Maisstärke-Tannin Holzklebstoffes für Sperrholz im Innenbereich
    In dieser Studie werden die physikalischen (rheologische und thermogravimetrische Analyse) sowie die mechanischen Eigenschaften (Trockenzugfestigkeit und 3-Punkt-Biegefestigkeit) von Sperrholz, das mit einem Maisstärke-Tannin-Klebstoff hergestellt wurde, untersucht. Dabei wurde der Klebstoff bezüglich seiner Brauchbarkeit für im Innenbereich verwendetes Sperrholz untersucht. Die optimale Aushärtungstemperatur dieses Klebstoffes lag bei 170°C und die Aushärtungszeit bei 4 min. Sperrholz, das mit einem formaldehydfreien Maisstärke-Tannin-Klebstoff verklebt wurde, wies ausgezeichnete mechanische Eigenschaften auf, die mit denjenigen von handelsüblichen Phenol-Formaldehyd-Sperrholzklebstoffen vergleichbar sind. Es hat sich gezeigt, dass Maisstärke-Tannin-Platten, die kein Formaldehyd enthalten und deren Emission der von erhitztem, nicht verklebtem Holz entspricht, mit Hexamethylentetramin (Hexamin) als Härter hergestellt werden können.
    Die Arbeit hat gezeigt, dass aus einem natürlichen nachwachsenden Rohstoff (Maisstärke und Akazientannin) ein umweltfreundlicher Holzklebstoff für die Verklebung von Sperrholz für den Innenbereich hergestellt werden kann.


    1. Aldo Ballerini AD, Pizzi A (2005) Non-toxic, zero emission tannin-glyoxal adhesives for wood panels. Holz Roh- Werkst 63:477–478CrossRefGoogle Scholar
    2. Bryce DJ, Greenwood CT (1963) Aspects of the thermal degradation of starch. Starch/Stärke 15(5):166CrossRefGoogle Scholar
    3. Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymer gels. Adv Polym Sci 83:57–192CrossRefGoogle Scholar
    4. EN 310 (1993) Wood-based panels. Determination of modulus of elasticity in bending and of bending strength. The European committee for standardization
    5. EN 314-1/-2 (1993) Plywood–bond quality, Part  1. Test methods. European Committee for Standardization, Brussels
    6. Greenwood CT (1967) The thermal degradation of starch. Adv Carbohyd Chem Bi 22:483–515Google Scholar
    7. Imam SH, Lijun M, Liang C, Greene RV (1999) Wood adhesive from crosslinked poly(vinyl alcohol) and partially gelatinized starch: preparation and properties. Starch/Stärke 51(6):225–229CrossRefGoogle Scholar
    8. Imam SH, Sherald HG, Lijun M, Liang C (2001) Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization. Polym Degrad Stabil 73:529–533CrossRefGoogle Scholar
    9. ISO/CD 12460-4 (2007) Wood-based panels – Determination of formaldehyde release – desiccator method. The European committee for standardization
    10. Kamoun C, Pizzi A, Zanetti M (2003) Upgrading of MUF resins by buffering additives – Part 1: Hexamine sulphate effect and its limits. J  Appl Polym Sci 90(1):203–214Google Scholar
    11. Li K, Geng X, Simonsen J, Karchesy J (2004) Novel wood adhesives from condensed tannins and polyethylenimine. Int J Adhes Adhes 24:327–333CrossRefGoogle Scholar
    12. Mansouri HR, Pizzi A, Leban JM (2006) Improved water resistance of UF adhesives for plywood by small pMDI additions. Holz Roh- Werkst 64(3):218–220CrossRefGoogle Scholar
    13. Mansouri HR, Pizzi A (2007) Recycled micronized polyurethane powders as active extenders of UF and PF wood panel adhesives. Holz Roh- Werkst 65(4):293–299CrossRefGoogle Scholar
    14. Mozaffar AK, Sayed Marghoob A, Ved Prakash M (2004) Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 24:485–493Google Scholar
    15. Nihat SC, Nilgül O (2002) Use of organosolv lignin in phenol-formaldehyde resins for particleboard production  II. Particleboard production and properties. Int J Adhes Adhes 22:481–486Google Scholar
    16. Pichelin F, Kamoun C, Pizzi A (1999) Hexamine hardener behaviour – effects on wood glueing, tannin and other wood adhesives. Holz Roh- Werkst 57(5):305–317CrossRefGoogle Scholar
    17. Pichelin F, Nakatani M, Pizzi A, Wieland S, Despres A, Rigolet S (2006) Structural beams from thick wood panels bonded industrially with formaldehyde-free tannin adhesives. Forest Prod  J 56(5):31–36Google Scholar
    18. Pizzi A (1977) Hot-setting tannin-urea-formaldehyde exterior wood adhesives. Adhess Age 20(12):27–35Google Scholar
    19. Pizzi A (1994) Advanced wood adhesives technology. Marcel Dekker, New York
    20. Pizzi A, Meikleham N, Dombo B, Roll W (1995) Autocondensation-based, zero-emission, tannin adhesives for particleboard. Holz Roh- Werkst 53:201–204CrossRefGoogle Scholar
    21. Pizzi A, Tekely P (1995) Mechanism of polyphenolic tannin resin hardening by hexamethylenetetramine: CP-MAS 13C NMR. J  Appl Polym Sci 56:1645–1650Google Scholar
    22. Pizzi A, Tekely P (1996) Hardening mechanisms by hexamethylenetetramine of fast-reacting phenolic wood adhesives – a CPMAS 13C NMR study. Holzforschung 50:277–281CrossRefGoogle Scholar
    23. Pizzi A, Tekely P, Panamgama LA (1996) A different approach to low formaldehyde emission aminoplastic wood adhesives. Holzforschung 50:481–485CrossRefGoogle Scholar
    24. Pizzi A (2000) Tannery Row – the story of some natural and synthetic wood adhesives. Wood Sci Technol 34(4):277–316CrossRefGoogle Scholar
    25. Pizzi A (2006) Recent developments in eco-efficient bio-based adhesives for wood bonding: opportunities and issues. J  Adhes Sci Technol 20(8):829–846CrossRefGoogle Scholar
    26. Richardson S, Gorton L (2003) Characterisation of the substituent distribution in starch and cellulose derivatives. Anal Chim Acta 497:27–65CrossRefGoogle Scholar
    27. Ross-Murphy SB (1984) Rheological methods. In: Chan HW-S (ed) Biophysical methods in food research. Blackwell, Palo Alto, CA
    28. Steffe JF (1996) Rheological methods in food process engineering. Freeman Press, East Lansing, MI
    29. Thompson GE (1991) Demethylated kraft lignin as a substitute for phenol in wood adhesives. MS thesis, Colorado State University
    30. Trosa A, Pizzi A (2001) A no-aldehyde emission hardener for tannin-based wood adhesives for exterior panels. Holz Roh- Werkst 59:266–271CrossRefGoogle Scholar
    31. Van Steene G, Masschelein-Kleiner L (1980) Modified starch for conservation purposes. Stud Conserv 25(2):64–70CrossRefGoogle Scholar
    32. Yoosup P, Dohertyb WOS, Halleya PJ (2008) Developing lignin-based resin coatings and composites. Ind Crop Prod 27:163–167CrossRefGoogle Scholar
    33. Yuan L, Kaichang L (2007) Development and characterization of adhesives from soy protein for bonding wood. Int J Adhes Adhes 27:59–67Google Scholar

    For further details log on website :

    No comments:

    Post a Comment

    Mangrove Forest Management & Restoration

    The Sabah Forestry Department has conserved most if not all Mangrove Forests under Class V for marine life conservation and as a natural me...