Thursday, 6 October 2016

Coir fiber reinforced polypropylene composite panel for automotive interior applications

Published Date
Article
DOI: 10.1007/s12221-011-0919-1

Cite this article as: 
Ayrilmis, N., Jarusombuti, S., Fueangvivat, V. et al. Fibers Polym (2011) 12: 919. doi:10.1007/s12221-011-0919-1

Author
  • Nadir Ayrilmis
  • Songklod Jarusombuti
  • Vallayuth Fueangvivat
  • Piyawade Bauchongkol
  • Robert H. White
Abstract

In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the internal bond strength of the composites were negatively influenced by increasing coir fiber content. However, the flexural strength, the tensile strength, and the hardness of the composites improved with increasing the coir fiber content up to 60 wt %. The flame retardancy of the composites improved with increasing coir fiber content. The results suggest that an optimal composite panel formulation for automotive interior applications is a mixture of 60 wt % coir fiber, 37 wt % PP powder, and 3 wt % MAPP.

References

  1. A. K. Bledzki and J. Gassan, Prog. Polym. Sci.24, 221 (1999).CrossRef
  2. 2.
    P. Chow, R. J. Lambert, C. T. Bowers, N. McKenzie, J. A. Youngquist, J. H. Muehl, and A. M. Kryzsik, “Proceedings of the 2000 International Kenaf Symposium”, p.139, 2000.
  3. 3.
    R. Rahman, M. Hasan, M. Huque, and N. Islam, J. Reinfor. Plast. Compos.29, 445 (2010).CrossRef
  4. 4.
    P. V. Joseph, G. Mathew, K. Joseph, S. Thomas, and P. Pradeep, J. Appl. Polym. Sci.88, 602 (2003).CrossRef
  5. 5.
    A. Arbelaiz, B. G. Cantero, R. Llano-Ponte, A. Valea, and I. Mondragon, Compos. Part A-Appl. S.36, 1637 (2005).CrossRef
  6. 6.
    A. Schirp and J. Stender, Eur. J. Wood Prod.68, 219 (2010).CrossRef
  7. 7.
    A. K. Mohanty, M. Misra, and L. T. Drzal, “Natural Fibers, Biopolymers and Biocomposites”, p.875, Boca Ranton, Taylor & Francis, 2005.
  8. 8.
    K. V. Rijswijk, W. D. Brouwer, and A. Beukers, “Natural Fibre Composites”, p.61, FAO Economic and Social Development Department, Rome, Italy, 2001.
  9. 9.
    R. N. Arancon, “Natural Fiber Production and Food Securtiy: Coir in Asia and the Pacific”, p.63, Asian and Pacific Coconut Community, Jakarta, 2007.
  10. 10.
    FAO, “International Year of Natural Fibres”, p.5, International Year of Natural Fibres Coordinating Unit, Trade and Markets Division, Rome, 2009.
  11. 11.
    DIN CEN/TS 15534-1, Wood-plastics Composites (WPC) — Part 1: Test Methods for Characterisation of WPC Materials and Products DIN Deutsches Institut für Normung e.V., Berlin, Germany, 2007.
  12. 12.
    EN 317, Particleboards and Fiberboards — Determination of Swelling in Thickness After Immersion in Water. European Committee for Standardization, Brussel, Belgium, 1993.
  13. 13.
    EN 323, Wood-based Panels — Determination of Density, 1993.
  14. 14.
    EN 310, Determination of Modulus of Elasticity in Bending and Bending Strength, 1993.
  15. 15.
    EN 319, Particleboards and Fiberboards — Determination of Tensile Strength Perpendicular to the Plane of the Board, 1993.
  16. 16.
    ASTM D 1037-06a, Standard Test Methods for Evaluating Properties of Wood-based Fiber and Particle Panel Materials, ASTM Int, West Conshohocken, PA, 2006.
  17. 17.
    ASTM D 2863-10, Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candlelike Combustion of Plastics (oxygen index). ASTM Int, West Conshohocken, PA, 2010.
  18. 18.
    D. J. Gardner and D. Murdock, “Extrusion of wood plastic composites”, p.5, University of Maine, Maine, 2010.
  19. 19.
    H. Hargitai, I. Racz, and R. D. Anandjiwala, Thermoplast. Compos. Comp.21, 165 (2008).CrossRef
  20. 20.
    A. Bismarck, A. Askargorta, J. Springer, T. L. B. Wielage, A. S. Ilja, and H. H. Limbach, Polym. Composite23, 872 (2004).CrossRef
  21. 21.
    DIN CEN/TS 15534-2, Wood-plastics Composites (WPC) — Part 2: Characterisation of WPC Materials. DIN Deutsches Institut für Normung e.V., Berlin, Germany, 2007.
  22. 22.
    EN 312, Particleboards — Specifications, 2010.
  23. 23.
    EN 622-5, Fiberboards Specifications — Requirements for Dry Process Boards (MDF), 2009.
  24. 24.
    N. Ayrilmis, “The Effect of Tree Species on Technological Properties of MDF”, MSc Thesis, Institute of Natural Sciences, Istanbul University, Istanbul, 2000.
  25. 25.
    M. Karina, H. Onggo, and A. Syampurwadi, J. Biol. Sci.7, 393 (2007).CrossRef
  26. 26.
    N. Ayrilmis and S. Jarusombuti, J. Compos. Mater.45, 103 (2011).CrossRef
  27. 27.
    S. T. Georgopoulos, P. A. Tarantili, E. Avgerinos, A. G. Andreopoulos, and E. G. Koukios, Polym. Degrad. Stabil.90, 303 (2005).CrossRef
  28. 28.
    R. G. Raj, B. V. Kokta, G. Groluleau, and C. Daneault, Pol. Plast. Technol. Eng.29, 339 (1990).CrossRef
  29. 29.
    J. E. Winandy and A. M. Krzysik, Wood Fiber Sci.39, 450 (2007).
  30. 30.
    A. N. Shebani, A. J. Van Reenen, and M. Meincken, J. Compos. Mater.43, 1305 (2009).CrossRef
  31. 31.
    S. M. Zabihzadeh, Bioresources5, 316 (2010).
  32. 32.
    T. M. Maloney, “Modern Particleboard and Dry-Process Fiberboard Manufacturing”, p.255, Miller Freeman Publications, San Francisco, 1977.
  33. 33.
    M. Chaharmahali, M. Tajvidi, and S. K. Najafi, Polym. Composite29, 606 (2008).CrossRef
  34. 34.
    A. K. Bledzki, A. A. Mamun, and O. Faruk, eXPRESS Polym. Lett.1, 755 (2007).CrossRef
  35. 35.
    A. Nourbakhsh and A. Ashori, Polym. Polym. Compos.16, 283 (2008).
  36. 36.
    P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol.63, 1259 (2003).CrossRef
  37. 37.
    A. Ashori and A. Nourbakhsh, Waste Manage.29, 1291 (2009).CrossRef
  38. 38.
    S. J. Jamil, I. Ahmed, and A. Ibrahim, J. Polym. Res.13, 315 (2006).CrossRef
  39. 39.
    M. Haque, M. Hasan, S. Islam, and E. Ali, Bioresource Technol.100, 4903 (2009).CrossRef
  40. 40.
    S. Mishra, J. B. Naik, and Y. P. Patil, Compos. Sci. Technol.60, 1729 (2000).CrossRef
  41. 41.
    H. P. S. Abdul Khalil, A. M. Siti, and A. K. Mohd Omar, Bioresources1, 220 (2006).
  42. 42.
    R. H. White, Wood Fiber Sci.12, 113 (1979).
  43. 43.
    G. Camino, L. Costa, and E. Casorati, J. Appl. Polym. Sci.35, 1863 (1998).CrossRef
  44. 44.
    B. Li and M. Xu, Polym. Degrad. Stabil.91, 1380 (2006).CrossRef
  45. 45.
    S. H. Chiu and W. K. Wang, Polymer39, 1951 (1998).CrossRef
  46. 46.
    M. T. T. That and J. Denault, “Proceedings of International Conference on Flax and Other Bast Plants”, p.211, Saskatoon, Canada, 2008.
  47. 47.
    N. M. Stark, R. H. White, S. A. Mueller, and T. A. Osswald, Polym. Degrad. Stabil.95, 1903 (2010).CrossRef
  48. 48.
    A. Gani and I. Naruse, Renew. Energ.32, 649 (2007).CrossRef
  49. 49.
    R. A. Susott, Forest Sci.28, 839 (1982).
  50. 50.
    E. D. Weil, M. H. Hirschler, N. G. Patel, M. M. Said, and S. Shakir, Fire Mater.16, 159 (1992).CrossRef

For further details log on website :
http://link.springer.com/article/10.1007/s12221-011-0919-1

No comments:

Post a Comment