Thursday, 6 October 2016

Use of coconut coir fibers as an inert solid support for production of cyclosporin A

Published Date
Articles
DOI: 10.1007/s12257-009-0121-0

Cite this article as: 
Survase, S.A., Bacigalupi, C., Annapure, U.S. et al. Biotechnol Bioproc E (2009) 14: 769. doi:10.1007/s12257-009-0121-0

Author 
  • Shrikant A. Survase
  • Celine Bacigalupi
  • Uday S. Annapure
  • Rekha S. Singhal
Abstract

In the present study, coconut coir was evaluated as an inert support for the production of cyclosporin A (CyA) using Tolypocladium inflatum MTCC 557 by solid state fermentation. Initially, four different inert supports such as coconut coir, polyurethane foam, polystyrene beads, and sugarcane baggase were screened using different production media as moistening agents for the maximum production of CyA. Different parameters such as fermentation time, carbon sources, moisture content, pH, and inoculum size were optimized. It was observed that coconut coir impregnated with medium modified with glycerol as carbon source, pH 6, at 80% moisture content, and inoculum size of 2.5 mL/2.5 g support produced 2641 mg/kg of CyA after 12 days as compared to 998 mg/kg before optimization. The yields were further increased to 3597 mg/kg substrate with addition of combination of amino acids after 48 h of fermentation.

References

  1. Pandey, A., C. R. Soccol, and D. A. Mitchell (2000) New developments in solid-state fermentation: I-bioprocesses and products. Process Biochem. 35: 1153–1169.CrossRef
  2. 2.
    Pandey, A., G. Szakacs, C. R. Soccol, A. Rodriguez, and V. T. Soccol (2001) Production, purification, and properties of microbial phytases. Bioresour. Technol. 77: 203–214.CrossRef
  3. 3.
    Barrios-González, J. and A. Mejía (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol. Annu. Rev. 2: 85–121.CrossRef
  4. 4.
    Ooijkaas, L. P., F. J. Weber, R. M. Buitelaar, J. Tramper, and A. Rinzema (2000) Defined media and inert supports: their potential as solid state fermentation production systems. TIBTECH. 18: 356–360.
  5. 5.
    Zhu, Y., J. O. Smits, W. Knol, and J. Bol (1994) A novel solid-state fermentation system using polyurethane foam as inert carrier. Biotechnol. Lett. 16: 643–648.CrossRef
  6. 6.
    Aidoo, K. E., R. Hendry, and B. J. B. Wood (1982) Solid state fermentations. Adv. Appl. Microbiol. 28: 201–237.CrossRef
  7. 7.
    Tomasini, A., C. Fajardo, and J. Barrios-Gonzaíez (1997) Gibberellic acid production using different solidstate fermentation systems. W. J. Microbiol. Biotechnol. 13: 203–206.CrossRef
  8. 8.
    Nampoothiri, K. M. and A. Pandey (1996) Solid-state fermentation for L-glutamic acid production using Brevibacterium sp. Biotechnol. Lett. 18: 199–204.
  9. 9.
    Murado, M. A., M. P. González, A. Torrado, and L. M. Pastrana (1997) Amylase production by solid state culture of Aspergillus oryzae on polyurethane foams. Some mechanistic approaches from an empirical model. Process Biochem. 32: 35–42.CrossRef
  10. 10.
    Nagendra-Prabhu, G. and M. Chandrasekaran (1995) Polystyrene: an inert carrier for L-glutaminase production by marine Vibrio costicola under solid-state fermentation. W. J. Microbiol. Biotechnol. 11: 683–684.CrossRef
  11. 11.
    Gautam, P., A. Sabu, A. Pandey, G. Szakacs, and C. R. Soccol (2002) Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresour. Technol. 83: 229–233.CrossRef
  12. 12.
    Weber, F. J., J. Tramper, and A. A Rinzema. (1999) A simplified material and energy balance approach for process development and scale-up of Coniothyrium minitans conidia production by solid-state cultivation in a packed-bed reactor. Biotechnol. Bioeng. 65: 447–458.CrossRef
  13. 13.
    Weber, F. J., J. Oostra, J. Tramper, and A. Rinzema (2002) Validation of a model for process development and scale-up of packed-bed solid-state bioreactors. Biotechnol. Bioeng. 77: 81–93.CrossRef
  14. 14.
    Lareo, C., A. F. Sposito, A. L. Bossio, and D. C. Volpe (2006) Characterization of growth and sporulation of Mucor bacilliformis in solid state fermentation on an inert support. Enz. Microbial. Technol. 38: 391–399.CrossRef
  15. 15.
    Marin-Cervantes, M. C., Y. Matsumoto, L. Ramı’ez-Coutino, Z. Rocha-Pino, G. Viniegra, and K. Shirai (2008) Effect of moisture content in polyurethane foams as support for solid-substrate fermentation of Lecanicillium lecanii on the production profiles of chitinases. Process Biochem. 43: 24–32.CrossRef
  16. 16.
    Ruckenstein, E. and X. B. Wang (1994) Production of lignin peroxidase by Phanerochaete chrysosporium immobilized on porous poly (styrenedivinylbenzene) carrier and its application to the degrading of 2- chlorophenol. Biotechnol Bioeng. 44: 79–86.CrossRef
  17. 17.
    Cuadra, T., F. J. Fernández, A Tomasini, and J. Barrios-González (2008) Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Letts. Appl. Microbiol. 46: 216–220.CrossRef
  18. 18.
    Gelmi, C., R. P’erez-Correa, M. Gonz’alez, and E. Agosin (2000) Solid substrate cultivation of Gibberella fujikuroi on an inert support. Process Biochem. 35: 1227–1233CrossRef
  19. 19.
    Auria, R., S. Hernandez, M. Raimbault, and S. Revah (1990) Ion exchange resin: a model support for solid state fermentation of Aspergillus nigerBiotechnol. Tech. 4: 391–396.CrossRef
  20. 20.
    Madamwar, D., S. Patel, and H. Parikh (1989) Fermentation for cellulose and b-glucosidase production by Aspergillus nigerJ. Ferment. Bioeng. 47: 424–426.CrossRef
  21. 21.
    Peralta-Perez, M. R., G. Saucedo-Castaneda, and M. Gutierrez-Rojas (2001) SiO2xerogel: a suitable inert support for microbial growth. J. Sol-Gel Sci. Technol. 20: 105–110.CrossRef
  22. 22.
    Silman, R. W., T. C. Nelsen, and R. J. Bothast (1991) Comparison of culture methods for production of Colletotrichum truncatum spores for use as a mycoherbicide. FEMS Microbiol. Lett. 79: 69–74.CrossRef
  23. 23.
    Kobel, H. and R. Traber (1982) Directed biosynthesis of cyclosporins. Euro. J. Appl. Microbiol. Biotechnol. 14: 237–240.CrossRef
  24. 24.
    Balaraman, K. and N. Mathew (2006) Optimization of media composition for the production of cyclosporin A by Tolypocladium species. Indian J. Med. Res. 123: 525–530.
  25. 25.
    Survase, S. A., N. S. Shaligram, R. C. Pansuriya, U. S. Annapure, and R. S. Singhal (2009) A novel medium for the enhanced production of cyclosporin A by Tolypocladium inflatum MTCC 557 using solid state fermentation. J. Microbiol. Biotechnol. 19: 462–467.CrossRef
  26. 26.
    Bai, R. S. and T. E. Abraham (2003) Studies on chromium (VI) adsorption-desorption using immobilized fungal biomass. Bioresour. Technol. 87: 17–26.CrossRef
  27. 27.
    Acharya, B. K., S. Mohana, and D. Madamwar (2008) Anaerobic treatment of distillery spent wash — A study on upflow anaerobic fixed film bioreactor. Bioresour. Technol. 99: 4621–4626.CrossRef
  28. 28.
    Ramana Murthy, M. V., E. V. S. Mohan, and A. K. Sadhukhan (1999) Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem.34: 269–280.CrossRef
  29. 29.
    Sekar, C., V. W. Rajasekar, and K. Balaraman (1997) Production of cyclosporin A by solid state fermentation. Bioprocess Eng. 17: 257–259.CrossRef
  30. 30.
    Pandey, A. (1992) Recent development in solid-state fermentation. Process Biochem. 27: 109–116.CrossRef
  31. 31.
    Prior, B. A., J. C. D. Preez, and P. W. Rein (1992) Environmental parameters. pp. 65–85. In: H. W. Doelle, D. A. Mitchell, and C. E. Rolz, (eds.). Solid Substrate Cultivation. Elsevier Applied Science, London, UK.
  32. 32.
    Lee, J. and S. Agathos (1989) Effect of amino acids on the production of cyclosporin A by T. inflatumBiotechnol. Letts. 2: 77–82.CrossRef
  33. 33.
    Balakrishnan, K. and A. Pandey (1996) Influence of amino acids on the biosynthesis of cyclosporin A by Tolypocladium inflatumAppl. Microbiol. Biotechnol. 45: 800–803.CrossRef
  34. 34.
    Nisha, A. K., S. Meignanalakshmi, and K. Ramasamy (2008) Comparative effect of amino acids in the production of cyclosporin A by solid and submerged fermentations. Biotechnology 7: 205–208.CrossRef
  35. 35.
    Haavik, H. I. (1981) Biosynthesis of bacitracin — role of precursors. FEMS Microbiol. Lett. 10: 111–114.CrossRef
  36. 36.
    Zocher, R., N. Madry, H. Peeters, and H. Kleinkauf (1984) Biosynthesis of cyclosporin A. Phytochemistry 23: 549–551.CrossRef
  37. 37.
    Sekar, C. and K. Balaraman (1998) Optimization studies on the production of cyclosporin A by solid state fermentation. Bioprocess Eng. 18: 293–296.CrossRef

For further details log on website :
http://link.springer.com/article/10.1007/s12257-009-0121-0

No comments:

Post a Comment