Thursday, 27 October 2016

Drought response of upland oak (Quercus L.) species in Appalachian hardwood forests of the southeastern USA

Published Date

Abstract

Key message

In Appalachian hardwood forests, density, stem size, and productivity affected growth during drought for red oak, but not white oak species. Minor effects of density suggest that a single low thinning does little to promote drought resilience for oaks in the region.

Context

Management is increasingly focused on promoting resilience to disturbance. Because stand density can modulate climate-growth relationships, thinning may be an adaptation strategy that promotes resistance/resilience to drought.

Aims

We examined how density, manipulated via thinning, stem size, and site productivity, influences the drought response of northern red, black, chestnut, and white oak.

Methods

We modeled the role of density, stem size, and site productivity on resistance, recovery, and resilience during two drought events.

Results

Chestnut and white oak displayed greater resistance, recovery, and/or resilience than did northern red and black oak. For black oak, density and stem size negatively affected resistance during the first and second drought, respectively. Density, stem size, and site productivity had no effect on chestnut and white oak.

Conclusion

The lack of sensitivity of chestnut and white oak to the ranges of density, stem size, and site productivity observed in this study and generally better resistance, recovery, and resilience suggests that management focused on the maintenance of these species, as opposed to a single silvicultural low thinning, may be a possible strategy for sustaining the growth and productivity of oak species in Appalachian hardwood stands. Drought response as affected by alternative thinning interventions should be evaluated.

Keywords

ResistanceResilienceRecoveryClimate changeQuercusAppalachian Mountains

References
  1. Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238. doi:10.1600/036364415X688754CrossRefPubMedGoogle Scholar
  2. Abrams MD (2003) Where has all the white oak gone? Bioscience 53:927–939. doi:10.1641/0006-3568(2003)053[0927:WHATWO]2.0.CO;2CrossRefGoogle Scholar
  3. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci 106:7063–7066. doi:10.1073/pnas.0901438106CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi:10.1016/j.foreco.2009.09.001CrossRefGoogle Scholar
  5. Anderegg WRL, Kane JM, Anderegg LDL (2012) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3:30–36. doi:10.1038/NCLIMATE1635
  6. Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349:528–532. doi:10.1126/science.aab1833CrossRefPubMedGoogle Scholar
  7. Aussenac G, Granier A (1988) Effects of thinning on water stress and growth in Douglas-fir. Can J For Res 18:100–105CrossRefGoogle Scholar
  8. Beck DE (1983) Thinning increases forage production in southern Appalachian cove hardwoods. South J Appl For 7:53–57Google Scholar
  9. Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity—evidence sine the middle of the twentieth century. Glob Chang Biol 12:862–882. doi:10.1111/j.1365-2486.2006.01134.xCrossRefGoogle Scholar
  10. Bolte A, Rahmann T, Kurh M, Pogoda P, Murach D, Gadow K (2004) Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvaticaL.) and Norway spruce (Picea abies [L.] Karst. Plant Soil 264:1–11. doi:10.1023/B:PLSO.0000047777.23344.a3CrossRefGoogle Scholar
  11. Bond-Lamberty B, Wang C, Gower ST (2002) Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can J For Res 32:1441–1450. doi:10.1139/x02-063CrossRefGoogle Scholar
  12. Bréda N, Badeau B (2008) Forest tree responses to extreme drought and some biotic events: towards a selection according to hazard tolerance. Geoscience 340:651–662. doi:10.1016/j.foreco.2015.06.008CrossRefGoogle Scholar
  13. Bréda N, Granier A (1996) Intra and interannual variations of transpiration, leaf area index and radial growth of sessile oak stand (Quercus petraea. Ann For Sci 52:23–42Google Scholar
  14. Bréda N, Granier A, Aussenac G (1996) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl. Tree Physiol 15:295–306CrossRefGoogle Scholar
  15. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042CrossRefGoogle Scholar
  16. Brzosetk ER, Dragoni D, Schmid HP, Rahman F, Sims D, Wayson CA, Johnson DJ, Phillips RP (2014) Chronic water stress reduced tree growth and the carbon sink of deciduous hardwood forests. Glob Chang Biol 20:2534–2532. doi:10.1111/gcb.12528Google Scholar
  17. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York, New YorkGoogle Scholar
  18. Chen HYH, Krestov PV, Klinka K (2002) Trembling aspen site index in relation to environmental measures of site quality at two spatial scales. Can J For Res 32:112–119. doi:10.1139/X01-179CrossRefGoogle Scholar
  19. Chen G, Tian H, Zhang C, Liu M, Ren W, Zhu W, Chappelka AH, Prior SA, Lockaby GB (2012) Drought in the southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim Chang 114:379–397. doi:10.1007/s10584-012-0410-zCrossRefGoogle Scholar
  20. Clinton BD, Boring LR, Swank WT (1993) Canopy gap characteristics and drought influences in oak forests of the Coweeta Basin. Ecology 74:1551–1558. doi:10.2307/1940082CrossRefGoogle Scholar
  21. Copenheaver CA, Crawford CJ, Fearer TM (2011) Age-specific responses to climate identified in the growth of Quercus alba. Trees 25:647–653. doi:10.1007/s00468-011-0541-2CrossRefGoogle Scholar
  22. D’Amato AW, Bradford JB, Fraver S, Palik BJ (2013) Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol Appl 23:1735–1742. doi:10.1890/13-0677.1CrossRefPubMedGoogle Scholar
  23. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff S, Swansoon FJ, Stocks BJ, Wotton BM (2001) Climate change and forest disturbances. Bioscience 51:723–734. doi:10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2CrossRefGoogle Scholar
  24. Desprez-Loustau ML, Marcais B, Nageleisen LM, Priou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612. doi:10.1051/forest:2006040CrossRefGoogle Scholar
  25. Doolittle WT (1958) Site index comparisons for several forest species in the southern Appalachians. Soil Sci Soc Am Pro 22:455–458CrossRefGoogle Scholar
  26. Elliott KJ, Swank WT (1994) Impacts of drought on tree mortality and growth in a mixed hardwood forest. J Veg Sci 5:229–235. doi:10.2307/3236155CrossRefGoogle Scholar
  27. Elliott KJ, Miniat CF, Pederson N, Laseter SH (2015) Forest tree response to hydroclimate variability in the southern Appalachians. Glob Chang Biol 21:4627–2641. doi:10.1111/gcb.13045CrossRefPubMedGoogle Scholar
  28. Fei SL, Kong NN, Steiner KC, Moser WK, Steiner EB (2011) Change in oak abundance in the eastern United States from 1980 to 2008. For Ecol Manag 262:1370–1377. doi:10.1016/j.foreco.2011.06.030CrossRefGoogle Scholar
  29. Fekedulegn D, RR H Jr, Colbert JJ (2003) Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. For Ecol Manag 117:409–425. doi:10.1016/S0378-1127(02)00446-2CrossRefGoogle Scholar
  30. Gea-Izquierdo G, Martin-Benito D, Cherubini P, Canellas I (2009) Climate-growth variability in Quercus ilex L. west Iberian open woodlands of different stand density. Ann For Sci 66:802–813. doi:10.1051/Forest/2009080CrossRefGoogle Scholar
  31. Gómez-Aparicio L, García-Valdéz R, Ruíz-Benito P, Azvala MA (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Chang Biol 17:2400–2414. doi:10.1111/j.1365-2486.2011.02421.xCrossRefGoogle Scholar
  32. Grossiord C, Granier A, Ratcliffe S, Bouriaud O, Bruelheide H, Chećko E, Forrester DI, Dawud SM, Finér L, Pollastrini M, Scherer-Lorenzen M, Valladares F, Bonal D, Gessler A (2014) Tree diversity does not always improve resistance of forest ecosystems to drought. P Natl. Acad Sci 111:14812–14815. doi:10.1073/pnas.1411970111CrossRefGoogle Scholar
  33. Haavik LJ, Billings SA, Guldin JM, Stephen FM (2015) Emergent insects, pathogens and drought shape changing patterns in oak decline in North America. For Ecol Manag 354:190–205. doi:10.1016/j.foreco.2015.06.019CrossRefGoogle Scholar
  34. Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nature. Clim Chang 3:203–207. doi:10.1038/nclimate1687CrossRefGoogle Scholar
  35. Harrison WC, Burk TE, Beck DE (1986) Individual tree basal area increment and total height equations for southern Appalachian mixed hardwoods after thinning. South J Appl For 10:99–104Google Scholar
  36. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 44:69–75Google Scholar
  37. Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecol Monogr 68:465–485. doi:10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2CrossRefGoogle Scholar
  38. Iverson LR, Prasad AM (2002) Potential redistribution of tree species habitat under five climate change scenarios in the eastern US. For Ecol Manag 155:205–222. doi:10.1016/S0378-1127(01)00559-XCrossRefGoogle Scholar
  39. Jenkins MA, Pallardy SG (1995) The influence of drought on red oak group species growth and mortality in the Missouri Ozarks. Can J For Res 25:1119–1127. doi:10.1139/x95-124CrossRefGoogle Scholar
  40. Johnson SE, Abrams MD (2009) Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States. Tree Physiol 29:1317–1328. doi:10.1093/treephys/tpp068CrossRefPubMedGoogle Scholar
  41. Kayahara GJ, Klinka K, Schroff AC (1997) The relationship of site index to synoptic estimates of soil moisture and nutrients for wester redcedar (Thuja plicata) in southern British Columbia. Northwest Sci 71:167–173Google Scholar
  42. Kelty MJ, Could EM Jr, Twery MJ (1987) Effects of understory removal in hardwood stands. North J Appl For 4:162–164Google Scholar
  43. Keyes MR, Grier CC (1981) Above-ground and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can J For Res 11:599–605CrossRefGoogle Scholar
  44. Keyser CE (2008) (revised November 2, 2015). Southern (SN) variant overview—forest vegetation simulator. USDA For Serv, Forest Management Service Center, Internal Rep. Fort Collins, Colorado Center. http://www.fs.fed.us/fmsc/ftp/fvs/docs/overviews/FVSsn_Overview.pdf. Accessed 3 February 2016
  45. Keyser TL, Brown PM (2014) Climate-growth relationships for yellow-poplar across structural and site quality gradients in the southern Appalachian Mountains. For Ecol Manag 229:158–165. doi:10.1016/j.foreco.2014.06.015CrossRefGoogle Scholar
  46. Keyser TL, Malone J, Cotton C, Lewis J (2014) Outlook for Appalachian-Cumberland forests: a subregional report from the southern forest futures project. USDA For Serv Gen Tech Rep GTR-188. Southern Research Station, Asheville, North Carolina
  47. Kittredge DB Jr (1988) The influence of species composition on the growth of individual red oaks in mixed stands in southern New England. Can J For Res 18:1550–1555CrossRefGoogle Scholar
  48. Klinka K, Carter RE (1990) Relationships between site index and synoptic environmental factors in immature coastal Douglas-fir stands. For Sci 36:815–830Google Scholar
  49. Klos RJ, Wang GG, Bauerle WL, Rieck JR (2009) Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data. Ecol Appl 19:699–708. doi:10.1890/08-0330.1CrossRefPubMedGoogle Scholar
  50. Kohler M, Sohn J, Nagele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) karst.) be increased through thinning? Eur J Forest Res 129:1109–1118. doi:10.1007/s10342-010-0397-9CrossRefGoogle Scholar
  51. LeBlanc DC (1998) Interactive effects of acidic deposition, drought, and insect attack on oak populations in the midwestern United States. Can J For Res 28:1184–1197. doi:10.1139/cjfr-28-8-1184CrossRefGoogle Scholar
  52. LeBlanc DC, Foster JR (1992) Predicting effects of global warming on growth and mortality of upland oak species in the Midwestern United-States—a physiologically based dendroecological approach. Can J For Res 22:1739–1752CrossRefGoogle Scholar
  53. LeBlanc DC, Terrell MA (2011) Comparison of growth-climate relationships between northern red oak and white oak across eastern North America. Can J For Res 41:1936–1947. doi:10.1139/X11-118CrossRefGoogle Scholar
  54. Lebourgeois F, Gomez N, Pinto P, Mérian P (2013) Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For Ecol Manag 303:61–71. doi:10.1016/j.foreco.2013.04.003CrossRefGoogle Scholar
  55. Lebourgeois F, Eberlé P, Mérian P, Seynave I (2014) Social status-mediated tree-ring responses to climate of Abies alba and Fagus sylvatica shift in importance with increasing stand basal area. For Ecol Manag 328:209–218. doi:10.1016/jforeco.2014.05.038CrossRefGoogle Scholar
  56. Linares JC, Camarero JJ, Carreira JA (2010) Competition modulates the adaptation capacity of forests to climatic stress: insights from recent growth decline and death in relic stands of the Mediterranean fir Abies pinsapo. J of Ecol 98:592–603. doi:10.1007/s11104-012-1397-yCrossRefGoogle Scholar
  57. Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–1920. doi:10.1111/j.1600-0706.2011.19372.xCrossRefGoogle Scholar
  58. Magruder M, Chhin S, Palik B, Bradford JB (2013) Thinning increases climatic resilience of red pine. Can J For Res 43:878–889. doi:10.1139/cjfr-2013-0088CrossRefGoogle Scholar
  59. Martin JG, Kloeppel BD, Schaefer TL, Kimbler DL, McNulty SG (1998) Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Can J For Res 28:1648–1659. doi:10.1139/x98-146CrossRefGoogle Scholar
  60. Martin-Benito D, del Rio M, Heinrich I, Helle G, Canellas I (2010) Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For Ecol Manag 259:967–975. doi:10.1016/j.foreco.2009.12.001CrossRefGoogle Scholar
  61. Martínez-Vilalta J, López BC, Loepfe L, Lloret F (2012) Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168:877–888. doi:10.1007/s00442-011-2132-8CrossRefPubMedGoogle Scholar
  62. McDowell N, Adams H, Bailey J, Hess M, Kolb T (2006) Homeostatic maintenance of ponderosa pine gas exchange in response to stand density changes. Ecol Appl 16:1164–1182. doi:10.1890/1051-0761(2006)016[1164:HMOPPG]2.0.CO;2CrossRefPubMedGoogle Scholar
  63. McKenney-Easterling M, DeWalle DR, Iverson LR, Prasad AM, Buda AR (2000) The potential impacts of climate change and variability on forests and forestry in the mid-Atlantic region. Clim Res 14:195–206. doi:10.3354/Cr014195CrossRefGoogle Scholar
  64. McNab WH (2011) Subregional variation in upland hardwood forest composition and disturbance regimes of the central hardwood region. In: Greenberg CH, Collins BS, Thompson FRIII (eds) Sustaining young forest communities: ecology and management of early successional habitats in the central hardwood region, USA. Springer, New York, pp. 11–26CrossRefGoogle Scholar
  65. McNulty S, Moore Meyers J, Caldwell P, Sun G (2013) Climate change summary. In: Wear DN, Gries JG (eds) The southern forest futures project: technical report. USDA For Serv Gen Tech Rep SRS-178, Southern Research Station, Asheville, North Carolina, pp. 27–43Google Scholar
  66. McShae WJ, Healy WM, Devers P, Fearer T, Koch KH, Stauffer D, Waldon J (2007) Forestry matters: decline of oaks will impact wildlife in hardwood forests. J Wildl Manag 71:1717–1728. doi:10.2193/2006-169CrossRefGoogle Scholar
  67. McWilliams WH, O’Brien RA, Reese GC, Waddell KL (2002) Distribution and abundance of oaks in North America. In: McShea WJ, Healy WM (eds) Oak forest ecosystems: ecology and management for wildlife. John Hopkins University Press, Baltimore, Maryland, pp. 13–33Google Scholar
  68. Mencuccini M, Martinez-Vilalta J, Vanderklein D, Hamid HA, Korakaki E, Lee S, Michiels B (2005) Size-mediate ageing reduces vigour in trees. Ecol Lett 8:1183–1190. doi:10.1111/j.1461-0248.2005.00819.xCrossRefPubMedGoogle Scholar
  69. Mérian P, Lebourgeois F (2011) Size-mediate climate-growth relationships in temperate forest: a multi-species analysis. For Ecol Manag 261:1382–1391. doi:10.1016/j.foreco.2011.01.019CrossRefGoogle Scholar
  70. Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015) Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. For Ecol Manag 339:22–33. doi:10.1016/j.foreco.2014.11.032CrossRefGoogle Scholar
  71. Mission L, Vincke C, Devillez F (2003) Frequency responses of radial growth series after different thinning intensities in Norway spruce (Picea abies (L.) karst.) stands. For Ecol Manag 177:51–63. doi:10.1016/S0378-1127(02)00324-9CrossRefGoogle Scholar
  72. Nowaki GJ, Abrams MD, Lorimer CG (1990) Composition, structure, and historical development of northern red oak stands along an edaphic gradient in north-central Wisconsin. For Sci 36:276–292Google Scholar
  73. Olson DF, Jr (1959) Site index curves for upland oak in the southeast. USDA for Serv res pap SE-123. Southeastern Forest Experiment Station, Asheville, North Carolina
  74. Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11:44–484. doi:10.1007/s004680050110CrossRefGoogle Scholar
  75. Pan C, Tajchman SJ, Kochenderfer JN (1997) Dendroclimatological analysis of major forest species of the central Appalachians. For Ecol Manag 98:77–87. doi:10.1016/S0378-1127(97)00087-XCrossRefGoogle Scholar
  76. Pedersen BS (1998) The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79:79–93. doi:10.2307/176866CrossRefGoogle Scholar
  77. Piutti E, Cescatti A (1997) A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J For Res 27:277–284. doi:10.1139/x96-176CrossRefGoogle Scholar
  78. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495. doi:10.1111/j.1438-8677.2012.00670.xCrossRefPubMedGoogle Scholar
  79. Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 4:627–638Google Scholar
  80. Roach BA (1977) A stocking guide for Allegheny hardwoods and its use in controlling intermediate cuttings. USDA for serv res pap NE-373. Northeastern Forest Experiment Station, Upper Darby, PennsylvaniaGoogle Scholar
  81. Sánchez-Salguero R, Linares JC, Camarero JJ, Madrigal-González J, Hevia A, Sánchez-Miranda A, Ballesteros-Cánovas JA, Alfaro-Sánchez R, García-Cervigón AI, Bigler C, Rigling A (2015) Disentangling the effects of competition and climate on individual tree growth: a retrospective and dynamic approach in Scotts pine. For Ecol Manag 358:12–25. doi:10.1016/j.foreco.2015.08.034CrossRefGoogle Scholar
  82. SAS Institute (2011) SAS Version 9.3. SAS Institute Inc., Cary, NCGoogle Scholar
  83. Sohn JA, Gebhardt T, Ammer C, Bauhus J, Häberle KH, Matyssek R, Grams TEE (2013) Mitigation of drought by thinning: short-term and long-term effects on growth and physiological performance of Norway spruce (Picea abies. For Ecol Manag 308:188–197. doi:10.1016/j.foreco.2013.07.048CrossRefGoogle Scholar
  84. Sork VL, Bramble J, Sexton O (1993) Ecology of mast-fruiting in tree species of north American deciduous oaks. Ecology 74:528–541. doi:10.2307/1939313CrossRefGoogle Scholar
  85. Speer JH, Grissino-Mayer HD, Orvis KH, Greenberg CH (2009) Climate response of five oak species in the eastern deciduous forest of the southern Appalachian Mountains, USA. Can J For Res 39:507–518. doi:10.1139/X08-194CrossRefGoogle Scholar
  86. Stout SL, Nyland RD (1986) Role of species composition in relative density measurement in Allegheny hardwoods. Can J For Res 16:574–579. doi:10.1139/x86-099CrossRefGoogle Scholar
  87. Tainter FH, Retzlaff WA, Oak SW, Starkey DA (1990) Decline in radial growth in red oaks is associated with short-term changes in climate. Eur J For Pathol 20:95–105CrossRefGoogle Scholar
  88. Tardiff J, Camarero JJ, Ribas M, Gutiérrez E (2003) Spatiotemporal variability in tree growth in the central Pyrenees: climatic and site influences. Ecol Monogr 73:241–257. doi:10.1890/0012-9615(2003)073[0241:SVITGI]2.0.CO;2CrossRefGoogle Scholar
  89. Vayreda J, Martinez-Vilata J, Gracia M, Retana J (2012) Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol 18:1028–1041. doi:10.1111/f.1365-2486.2011.02606.xCrossRefGoogle Scholar
  90. Vogt KA, Vogt DJ, Moore EE, Fatuga BA, Redlin MR, Edmonds RL (1987) Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir forests. J Ecol 75:857–870CrossRefGoogle Scholar
  91. Vose JM, Klepzig K (2013) Climate change mitigation and management options: a guide for natural resource managers in southern forest ecosystems. CRC Press, Baca Raton, Florida. doi:10.1201/b15613-9CrossRefGoogle Scholar
  92. Ward JS, Stephens GR (1994) Crown class transition rates of maturing northern red oak (Quercus rubra L. For Sci 40:221–237Google Scholar
  93. White PB, Van de Gevel SL, Grissino-Mayer HD, LaForest LB, Deweese GG (2011) Climatic response of oak species across and environmental gradient in the southern Appalachian Mountains, USA. Tree-Ring Res 67:27–37. doi:10.3959/2009-1.1CrossRefGoogle Scholar
  94. Zang C, Pretzsch H, Rothe A (2012) Size-dependent responses to summer drought in scots pine, Norway spruce and common oak. Trees 26:557–569. doi:10.1007/s00468-011-0617-zCrossRefGoogle Scholar
  95. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary productivity from 2000 through 2009. Science 329:940–943. doi:10.1126/science.1192666CrossRefPubMedGoogle Scholar

For further details log on website :
http://link.springer.com/article/10.1007/s13595-016-0576-z

No comments:

Post a Comment