Thursday, 27 October 2016

Influence of tree species, tree diameter and soil types on wood density and its radial variation in a mid-altitude rainforest in Madagascar

Published Date
Original Paper
DOI: 10.1007/s13595-016-0576-z


Cite this article as: 
Ramananantoandro, T., Ramanakoto, M.F., Rajoelison, G.L. et al. Annals of Forest Science (2016). doi:10.1007/s13595-016-0576-z


Author


  • Tahiana Ramananantoandro


  • Email author
  • Miora F. Ramanakoto
  • Gabrielle L. Rajoelison
  • Jean C. Randriamboavonjy
  • Herimanitra P. Rafidimanantsoa


  • Abstract

    Key message

    In a tropical rainforest of Madagascar, tree species differed in average wood density depending on their light requirements and on the soil type. Tree diameter had no effect. None of these factors influenced the variation of density related to the distance to the pith.

    Context

    Wood density (WD) is an important wood property as it correlates with several functional tree traits and mechanical wood properties. Furthermore, wood density is often used in forest biomass and carbon stock estimates. The variation in wood density depends on a range of intrinsic or environmental factors.

    Aims

    This study investigated the effect of species, tree diameter, soil types and the distance from the pith on wood density in native hardwood species from a natural, mid-elevation rainforest in Madagascar.

    Methods

    We extracted pith-to-bark core samples from the trunk of 204 trees from 23 species. Each wood core was sectioned into 1 cm-long segments on which measures of volume and weight were performed. Within-tree and between-tree variations of wood density were analysed.

    Results

    Average wood density was higher on shade-tolerant than on light-demanding species. It was higher on poor ferralitic than on fertile lowland soils. Tree diameter had no influence on average wood density. Regarding within-tree variation, wood density does not vary from pith to bark.

    Conclusion

    These results help fill the gaps in wood properties database for tree forest species in Madagascar.

    Keywords

    MadagascarModellingSpecies light requirementSoil typesWood density




    References

    1. Baillères H, Vitrac O, Ramananantoandro T (2005) Assessment of continuous distribution of wood properties from a low number of samples: application to the variability of modulus of elasticity between trees and within a tree. Holzforschung 59:524–530. doi:10.1515/HF.2005.087CrossRefGoogle Scholar
    2. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patino S, Pitman NCA, Silva N, Martınez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562. doi:10.1111/j.1529-8817.2003.00751.xCrossRefGoogle Scholar
    3. Baltzer JL, Thomas SC (2007) Determinants of whole-plant light requirements in Bornean rain forest tree saplings. J Ecol 95:1208–1221. doi:10.1111/j.1365-2745.2007.01286.xCrossRefGoogle Scholar
    4. Chave J, Muller-Laundau HC, Baker TR, Easdale TA, Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2,456 neotropical tree species. Ecol Appl 16:2356–2367. doi:10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2CrossRefPubMedGoogle Scholar
    5. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. doi:10.1111/j.1461-0248.2009.01285.xCrossRefPubMedGoogle Scholar
    6. Chowdhury Q, Khan R, Mehedi AH (2013) Wood density variation in four plantation species growing in Bangladesh. J Indian Acad Wood Sci 10:32–38. doi:10.1007/s13196-013-0090-yCrossRefGoogle Scholar
    7. Coutand C, Jeronimidis G, Chanson B, Loup C (2004) Comparison of mechanical properties of tension and opposite wood in Populus. Wood Sci Technol 38:11–24. doi:10.1007/s00226-003-0194-4CrossRefGoogle Scholar
    8. De Castro F, Williamson GB, Dejesus RM (1993) Radial variation in the wood specific-gravity of Joannesia princeps: the roles of age and diameter. Biotropica 25:176–182. doi:10.2307/2389181CrossRefGoogle Scholar
    9. Ducrey M, Labbé P (1985) Etude de la régénération naturelle contrôlée en forêt tropicale humide de Guadeloupe. I Revue bibliographique, milieu naturel et élaboration d’un protocole expérimental. Ann For Sci 42:297–322. doi:10.1051/forest:19850304CrossRefGoogle Scholar
    10. Dupuy B, De Madron DL, Petruci Y (1998) Sylviculture des peuplements naturels en forêt dense humide africaine. Acquis et recommandations. Bois For Trop 257:5–22Google Scholar
    11. Fukazawa K (1984) Juvenile wood of hardwoods judged by density variation. IAWA Bull 5:65–73. doi:10.1163/22941932-90000861CrossRefGoogle Scholar
    12. Goodman SM, Raselimanana AP, Wilmé L (2007) Inventaires de la faune et de la flore du couloir forestier d’Anjozorobe-Angavo. Recherche pour le développement, Série Sciences Biologiques N° 24. Centre d’Information et de Documentation Scientifique et Technique, Antananarivo, Madagascar, 217 p. ISSN 1025–3467‬‬‬‬‬‬‬
    13. Guilley E (2000) La densité du bois de chêne sessile (Quercus petraea Liebl.) Elaboration d’un modèle pour l’analyse des variabilités intra-et interarbres. Origine et Evaluation non destructive de l’effet “arbre”, Interprétation anatomique du modèle proposé. Ecole Nationale du Genie Rural des Eaux et Forêts, Nancy, France
    14. Hall JB, Swaine MD (1981) Distribution and ecology of vascular plants in a tropical rain forest. Forest vegetation in Ghana. W. Junk, La Haye, The Netherlands, 383 p
    15. Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-Andre L (2010) Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecol Manag 260:1375–1388. doi:10.1016/j.foreco.2010.07.040CrossRefGoogle Scholar
    16. King DA, Davies SJ, Tan S, Noor NSM (2006) The role of wood density and stem support costs in the growth and mortality of tropical trees. J Ecol 94:670–680. doi:10.1111/j.1365-2745.2006.01112.xCrossRefGoogle Scholar
    17. Machado JS, Louzada JL, Santos AJA, Nunes L, Anjos O, Rodrigues J, Simões RMS, Pereira H (2014) Variation of wood density and mechanical properties of blackwood (Acacia Melanoxylon R. Br.). Mater Design 56:975–980. doi:10.1016/j.matdes.2013.12.016CrossRefGoogle Scholar
    18. McLean JP, Zhang T, Bardet S, Beauchêne J, Thibaut A, Clair B, Thibaut B (2011) The decreasing radial wood stiffness pattern of some tropical trees growing in the primary forest is reversed and increases when they are grown in a plantation. Ann For Sci 68:681–688. doi:10.1007/s13595-011-0085-zCrossRefGoogle Scholar
    19. MEF Ministère de l’Environnement et des Forêts (1996) Inventaire Ecologique Forestier National—Annexes. Madagascar
    20. Montes CS, Hernandez RE, Beaulieu J (2007) Radial variation in wood density and correlations with growth of Calycophyllum spruceanum at an early age in the Peruvian Amazon. Wood Fiber Sci 39:377–387Google Scholar
    21. Muller-Landau HC (2004) Interspecific and intersite variation in wood density of tropical trees. Biotropica 36:20–32. doi:10.1111/j.1744-7429.2004.tb00292.xGoogle Scholar
    22. Nock CA, Geihofer D, Grabner M, Baker PJ, Bunyavejchewin S, Hietz P (2009) Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand. Ann Bot 104:297–306. doi:10.1093/aob/mcp118CrossRefPubMedPubMedCentralGoogle Scholar
    23. Patino S, Lloyd J, Paiva R, Baker TR, Quesada CA, Mercado LM, Schmerler J, Schwarz M, Santos AJB, Aguilar A, Czimczik CI, Gallo J, Horna V, Hoyos EJ, Jimenez EM, Palomino W, Peacock J, Pena-Cruz A, Sarmiento C, Sota A, Turriago JD, Villanueva B, Vitzthum P, Alvarez E, Arroyo L, Baraloto C, Bonal D, Chave J, Costa ACL, Herrera R, Higuchi N, Killeen T, Leal E, Luizao F, Meir P, Monteagudo A, Neil D, Nunez-Vargas P, Penuela MC, Pitman N, Priante Filho N, Prieto A, Panfil SN, Rudas A, Salomao R, Silva N, Silveira M, deAlmeida SS, Torres-Lezama A, Vasquez-Martinez R, Vieira I, Malhi Y, Phillips OL (2009) Branch xylem density variations across Amazonia. Biogeosci 6:545–568. doi:10.5194/bg-6-545-2009CrossRefGoogle Scholar
    24. R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed April 2013
    25. Rajaonera ML (2008) Mise en place d’un état de référence et d’un plan de suivi écologique permanent des vestiges de forêt primaire de la Station Forestière de Mandraka. Mémoire de fin d’études, Ecole Supérieure des Sciences Agronomiques, Antananarivo, Madagascar
    26. Rajoelison LG, Randriamboavonjy JC, Razafindramanga M, Rabenilalana FM, Rakoto Ratsimba H (2007) Aménagement participatif d’un bassin versant de la Mandraka, Rapport final CDE. Antananarivo, Madagascar
    27. Ramananantoandro T, Ramanakoto MF, Rajemison AH, Eyma F (2013) Relationship between density and aesthetic attributes of wood and preference of Malagasy consumers. Ann For Sci 70:649–658. doi:10.1007/s13595-013-0299-3CrossRefGoogle Scholar
    28. Rollet B (1984) Etudes sur une forêt d’altitude des Andes Vénézuéliennes. Bois For Trop 205:3–23Google Scholar
    29. Schatz GE (2000) Endemism in the Malagasy tree flora. In: Lourenço WR, Goodman SM (eds) Diversity and endemism in Madagascar. Mémoires de la Société de Biogéographie, Paris, pp. 1–9Google Scholar
    30. Sharma PD (2005) Ecology and Environment. Rastogi Publications, New Delhi, India, 640 p. ISBN 8171339050
    31. Thibaut B, Baillères H, Chanson B, Fournier DM (1997) Plantation d’arbres à croissance rapide et qualités des produits forestiers sous les tropiques. Bois For Trop 252:49–53Google Scholar
    32. Van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378. doi:10.1111/j.1469-8137.2006.01757.xCrossRefPubMedGoogle Scholar
    33. Whitmore TC (1990) Tropical rain forests. Clarendon Press, Oxford, p. 238Google Scholar
    34. Wiemann MC, Williamson GB (1989) Radial gradients in the specific gravity of wood in some tropical and temperate trees. For Sci 35:197–210Google Scholar
    35. Wimmer R, Downes GM, Evans R (2002) High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes. Ann For Sci 59:519–524. doi:10.1051/forest:2002036CrossRefGoogle Scholar
    36. Woodcock DW, Shier AD (2003) Does canopy position affect wood specific gravity in temperate forest trees? Ann Bot 91:529–537. doi:10.1093/aob/mcg054CrossRefPubMedPubMedCentralGoogle Scholar
    37. Zeidler A (2012) Variation of wood density in Turkish hazel (Corylus Colurna L.) grown in the Czech Republic. J For Sci 58:145–151Google Scholar

    For further details log on website :
    http://link.springer.com/article/10.1007/s13595-016-0578-x

    No comments:

    Post a Comment