Blog List

Wednesday 11 October 2017

Calibration of SilviScan data of Cryptomeria japonica wood concerning density and microfibril angles with NIR hyperspectral imaging with high spatial resolution

Author
Te Ma / Tetsuya Inagaki / Satoru Tsuchikawa
Published Online: 2017-01-13 | DOI: https://doi.org/10.1515/hf-2016-0153

Abstract

Wood density and microfibril angle (MFA) are strongly correlated with wood stiffness, swelling/shrinkage, and its anisotropy. Understanding the spatial distribution of these data is critical for solid timber applications. In this study, near-infrared (NIR) hyperspectral imaging has been calibrated for evaluation of wood density and MFA in an effective manner. Briefly, five wood samples collected from both normal wood (NW) and compression wood (CW) moieties of two different Cryptomeria japonica trees were analyzed. Partial least squares (PLS) regression analysis was performed to determine the relationship between X-ray densitometry data obtained by SilviScan and NIR spectra, and cross-validation (leave-one-out) approach served for prediction performances. The validation coefficient of determination (r2) between the predicted densities by the NIR technique and the X-ray data was 0.83 with a root mean squared error of cross-validation (RMSECV) of 105.2 kg m−3. Regarding MFA, the r2was 0.77 and RMSECV 5.36°. Wood density was successfully maped as well as the MFA at a high spatial resolution. As a result, the detection of annual growth ring features and evaluation of aspects of heterogeneous wood quality has been facilitated. The mapping results were visually checked by looking at the difference between earlywood (EW) and latewood (LW) for density and by means of the Mäule color reaction indicating high lignin contents in CW in terms of MFA validation as CWs have high MFA values.
Keywords: compression wood (CW)microfibril angle (MFA)NIR hyperspectral imagingpartial least squares (PLS) regression analysisSilviScan systemwood density

References

  • Arriaga, F., Monton, J., Segues, E., Íñiguez-Gonzalez, G. (2014) Determination of the mechanical properties of radiata pine timber by means of longitudinal and transverse vibration methods. Holzforschung 68:299–305.CrossrefWeb of ScienceGoogle Scholar
  • Barboza, F.D., Poppi, R.J. (2003) Determination of alcohol content in beverages using short-wave near-infrared spectroscopy and temperature correction by transfer calibration procedures. Anal. Bioanal. Chem. 377:695–701.CrossrefGoogle Scholar
  • Bonarski, J.T., Kifetew, G., Olek, W. (2015) Effects of cell wall ultrastructure on the transverse shrinkage anisotropy of Scots pine wood. Holzforschung. 69:501–507.Web of ScienceCrossrefGoogle Scholar
  • Casado, M., Acuña, L., Basterra, L.-A., Ramón-Cueto, G., Vecilla, D. (2012) Grading of structural timber of Populus×euramericana clone I-214. 66:633–638.Google Scholar
  • Cave, I.D., Walker, J.C.F. (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. Forest Prod. J. 44:43–48.Google Scholar
  • Costa, V.E., de Rezende, M.A., Rodrigues, V.A. (2014) Conversion between basic density and apparent density at any moisture content in Eucalyptus grandis. Holzforschung. 68:981–986.CrossrefGoogle Scholar
  • Dickson, R.L., Raymond, C.A., Joe, W., Wilkinson C.A. (2003) Segregation of Eucalyptus dunnii Logs Using Acoustics. For. Eco. Manage. 179:243–251.CrossrefGoogle Scholar
  • Donaldson, L.A. (1993) Within-and between-tree variation in microfibril angle in pinus radiata. N. Z. J. For. Sci. 22:77–86.Google Scholar
  • Donaldson, L. (2008) Microfibril angle: measurement, variation and relationships – a review. IAWA J. 29:345–386.Web of ScienceCrossrefGoogle Scholar
  • Evans, R., Ilic, J. (2001) Rapid prediction of wood stiffness from microfibril angle and density. Forest Prod. J. 51:53–57.Google Scholar
  • Fernandes, A., Lousada, J., Morais, J., Xavier, J., Pereira, J., Melo-Pinto, P. (2013) Measurement of intra-ring wood density by means of imaging VIS/NIR spectroscopy (hyperspectral imaging). Holzforschung 67:59–65.CrossrefWeb of ScienceGoogle Scholar
  • Haddadi, A., Leblon, B., Burger, J., Pirouz, Z., Groves, K., Nader, J. (2015). Using near-infrared hyperspectral images on subalpine fir board. Part 2: density and basic specific gravity estimation. Wood Mater. Sci. Eng. 10:41–56.CrossrefWeb of ScienceGoogle Scholar
  • Hein, P.R.G. (2012) Estimating shrinkage, microfibril angle and density of eucalyptus wood by near infrared spectroscopy. J. Near Infrared Spectrosc. 20:427–436.Google Scholar
  • Iliadis, L., Mansfield, S.D., Avramidis, S., El-Kassaby, Y.A. (2013) Predicting Douglas-fir wood density by artificial neural networks (ANN) based on progeny testing information. Holzforschung 67:771–777.CrossrefWeb of ScienceGoogle Scholar
  • Inagaki, T., Hartley, I.D., Tsuchikawa, S., Reid, M. (2014) Prediction of oven-dry density of wood by time-domain terahertz spectroscopy. Holzforschung 68:61–68.CrossrefWeb of ScienceGoogle Scholar
  • Inagaki, T., Mitsui, K., Tsuchikawa, S. (2015) Visualisation of degree of acetylation in beechwood by near infrared hyperspectral imaging. J. Near Infrared Spectrosc. 23:353–360.Google Scholar
  • Kanbayashi, T., Miyafuji, H. (2016) Effect of ionic liquid treatment on the ultrastructural and topochemical features of compression wood in Japanese cedar (Cryptomeria japonica). Sci. Rep. 6:30147.CrossrefWeb of ScienceGoogle Scholar
  • Kobori, H., Gorretta, N., Rabatel, G., Bellon-Maurel, V., Chaix, G., Roger, J.M., Tsuchikawa, S. (2013) Applicability of vis-NIR hyperspectral imaging for monitoring wood moisture content (MC). Holzforschung. 67:307–314.CrossrefWeb of ScienceGoogle Scholar
  • Leblon, B., Adedipe, O., Hans, G., Haddadi, A., Tsuchikawa, S., Burger, J., Stirling, R., Pirouz, Z., Groves, K., Nader, J., LaRocque, A. (2013) A review of near-infrared spectroscopy for monitoring moisture content and density of solid wood. Forestry Chron. 89:595–606.CrossrefWeb of ScienceGoogle Scholar
  • Mansfield, S.D., Parish, R., Ott, P., Hart, J.F., Goudie, J.W. (2016) Assessing the wood quality of interior spruce (Picea glauca×P. engelmannii): variation in strength, relative density, microfibril angle, and fiber length. Holzforschung. 70:223–234.CrossrefWeb of ScienceGoogle Scholar
  • Nyström, J., Kline, D.E. (2000) Automatic classification of compression wood in green southern yellow pine. Wood Fiber Sci. 32:301–310.Google Scholar
  • Olek, W., Bonarski, J.T. (2014) Effects of thermal modification on wood ultrastructure analyzed with crystallographic texture. Holzforschung. 68:721–726.CrossrefWeb of ScienceGoogle Scholar
  • Rouco, M.C.A., Muñoz, G.R. (2015) Influence of blue stain on density and dimensional stability of Pinus radiata timber from northern Galicia (Spain). Holzforschung. 69:97–102.CrossrefGoogle Scholar
  • Schajer, G.S., Orhan, F.B. (2006) Measurement of wood grain angle moisture content and density using microwaves. Holz Roh Werkst. 64:483–490.CrossrefGoogle Scholar
  • Schwanninger, M., Jose, C.R., Fackler, K. (2011) A review of band assignments in near infrared spectra of wood and wood components. J. Near Infrared Spectr. 19:287–308.Google Scholar
  • Sharma, M., Altaner, C.M. (2014) Properties of young Araucaria heterophylla (Norfolk Island pine) reaction and normal wood. Holzforschung. 68:817–821.CrossrefGoogle Scholar
  • Smardzewski, J., Kamisiński, T., Dziurka, D., Mirski, R., Majewski, A., Flach, A., Pilch, A. (2015) Sound absorption of wood-based materials. Holzforschung. 69:431–439.CrossrefWeb of ScienceGoogle Scholar
  • Tanaka, M., Yamamoto, H., Kojima, M., Yoshida, M., Matsuo, M., Lahjie, A.M., Hongo, I., Arizono, T. (2014) The interrelation between microfibril angle (MFA) and hygrothermal recovery (HTR) in compression wood and normal wood of Sugi and Agathis. Holzforschung. 68:823–830.CrossrefWeb of ScienceGoogle Scholar
  • Tsuchikawa, S. (2007) A review of recent near infrared research for wood and paper. Appl. Spectrosc. Rev. 42:43–71.Web of ScienceCrossrefGoogle Scholar
  • Tsuchikawa, S., Kobori, H. (2015) A review of recent application of near Infrared spectroscopy to wood science and technology. J. Wood Sci. 61:213–220.Web of ScienceCrossrefGoogle Scholar
  • Tsuchikawa, S., Schwanninger, M. (2013) A review of recent near-infrared research for wood and paper (part 2). Appl. Spectrosc. Rev. 48:560–587.CrossrefWeb of ScienceGoogle Scholar
  • Williams, P., Norris, K.H. Near-infrared technology in the agricultural and food industries (2nd edition). American Association of Cereal Chemists, St. Paul, 2001.Google Scholar
  • Yamamoto, H., Sassus, F., Ninomiya M., Gril, J. (2001) A model of anisotropic swelling and shrinking process of wood. Wood Sci. Technol. 35:167–181.CrossrefGoogle Scholar
  • Yoshinaga, A., Fujita, M., Saiki, H. (1989) Evaluation of the varieties of lignins in wood and bamboo cell walls by mäule color reaction coupled with microscopic spectrophotometry. Bull Kyoto Univ. For. 61:276–284.Google Scholar
  • Yao, S., Pu, J. (2009) Application of near infrared spectroscopy in analysis of wood properties. Spectrosc. Spectr. Anal. 29: 974–978.Web of ScienceGoogle Scholar
  • Zobel, B.J., Buijtenen, J.P. van. Wood Variation: Its Causes and Control. Springer-Verlag, Berlin Heidelberg, 1989.Google Scholar

About the article

Received: 2016-09-15
Accepted: 2016-12-07
Published Online: 2017-01-13
Published in Print: 2017-04-01

Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2016-0153.
©2017 Walter de Gruyter GmbH, Berlin/Boston. 
For further details log on website :
https://www.degruyter.com/view/j/hfsg.2017.71.issue-4/hf-2016-0153/hf-2016-0153.xml?rskey=BCyRzR&result=1

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...