Blog List

Wednesday 11 October 2017

Inheritance of basic density and microfibril angle and their variations among full-sib families and their parental clones in Picea glehnii

Author
Jun Tanabe / Akira Tamura / Futoshi Ishiguri / Yuya Takashima / Kazuya Iizuka / Shinso Yokota
Published Online: 2014-10-25 | DOI: https://doi.org/10.1515/hf-2014-0052

Abstract

Picea glehnii is one of the most important plantation species in Hokkaido, Japan. Basic density (BD) and microfibril angle (MFA) of the S2 layer in latewood tracheid in 16 full-sib families and their six parental clones planted in Hokkaido were examined to clarify among-family and clonal variations of wood properties and their inheritance from parents to offspring. Mean values of BD and MFA in full-sib families and parental clones were 0.36 and 0.35 g cm-3 and 16.1° and 10.7°, respectively. Estimated repeatabilities of BD and MFA in juvenile wood (jW) were higher than those in mature wood. In addition, larger genetic coefficient of variation was detected for jW, indicating that improvement of jW properties is important to Hokkaido’s tree breeding program. Parent-offspring correlation coefficients were positive and significant in all properties. These results suggest that the influence of parental clones on wood properties is inheritable to offspring. Moreover, there were no significant differences between reciprocal crosses of wood properties, suggesting that plus-tree clones with good wood properties can be used as either female or male parents for producing offspring. There is a possibility of improving wood properties in P. glehnii by crossing clones with desirable properties.
Keywords: basic densitymicrofibril angleparent-offspring correlationtree breeding for wood quality

References

  • Alteyrac, J., Cloutier, A., Ung, C.H., Zhang, S.Y. (2006) Mechanical properties in relation to selected wood characteristics of black spruce. Wood Fiber Sci. 38:229–237.Google Scholar
  • Cornelius, J. (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can. J. Forest Res. 24:372–379.Google Scholar
  • Falconer, D.S., Mackay, T.F.C. Introduction to Quantitative Genetics (4th ed.). Longman Group, Essex. 1996.Google Scholar
  • Gräns, D., Hannrup, B., Isik, F., Lundqvist, S.O., McKeand, S. (2009) Genetic variation and relationships to growth traits for microfibril angle, wood density and modulus of elasticity in a Picea abies clonal trial in southern Sweden. Scand. J. Forest Res. 24:494–503.CrossrefWeb of ScienceGoogle Scholar
  • Hannrup, B., Cahalan, C., Chantre, G., Grabner, M., Karlsson, B., Le Bayon, I., Jones, G.L., Müller, U., Pereira, H., Rodrigues, J.C., Rosner, S., Rozenberg, P., Wilhelmsson, L., Wimmer, R. (2004) Genetic parameters of growth and wood quality traits in Picea abies. Scand. J. Forest Res. 19:14–29.CrossrefGoogle Scholar
  • Hirakawa, Y., Fujisawa, Y. (1996) The S2 microfibril angle variations in the vertical direction of latewood tracheids in sugi (Cryptomeria japonica) trees. Mokuzai Gakkaishi 42:107–114. In Japanese with English summary.Google Scholar
  • Iizuka, K., Akutsu, H., Itahana, N. (1999) Clonal variation of wood quality in the grafted plus-trees of Picea glehnii. J. Jpn Forest Soc. 81:325–329. In Japanese with English summary.Google Scholar
  • Iizuka, K., Hayashi, E., Itahana, N. (2000) Comparative analysis of growth and wood quality of Picea glehnii plus-tree-clones growing in various seed orchards. J. Jpn. Forest Soc. 82:80–86. In Japanese with English summary.Google Scholar
  • Ivkovich, M., Namkoong, G., Koshy, M. (2002) Genetic variation in wood properties of interior spruce. II. Tracheid characteristics. Can. J. Forest Res. 32:2128–2139.Google Scholar
  • Kawaguchi, N., Takahashi, M., Okubo, I. (1986) The qualities of plantation-grown akaezomatsu (I). J. Hokkaido Forest Res. Inst. 416:1–10.Google Scholar
  • Kennedy, R.W. (1995) Coniferous wood quality in the future: concerns and strategies. Wood Sci. Technol. 29:321–338.CrossrefGoogle Scholar
  • Kita, K. (2008) Picea glehniiP. jezoensisP. abies. In: Forest Tree Breeding and Forest Genetic Resource in Hokkaido. Ed. Hokkaido Rinboku Ikusyu Kyokai. Ebetsu, Japan. pp. 61–81. In Japanese.Google Scholar
  • Kobayashi, Y. (1952) A simple method of demonstrating the fibrillar orientation in lignified walls. J. Jpn. Forest Soc. 34:392–393. In Japanese.Google Scholar
  • Koubaa, A., Isabel, N., Zhang, S.Y., Beaulieu, J., Bousquet, J. (2005) Transition from juvenile to mature wood in black spruce (Picea mariana (Mill.) B.S.P.). Wood Fiber Sci. 37:445–455.Google Scholar
  • Lenz, P., Cloutier, A., MacKay, J., Beaulieu, J. (2010) Genetic control of wood properties in Picea glauca: an analysis of trends with cambial age. Can. J. Forest Res. 40:703–715.Web of ScienceGoogle Scholar
  • Lindstörm, H., Evans, R., Reale, M. (2005) Implications of selecting tree clones with high modulus of elasticity. N. Z. J. Forest Sci. 35:50–71.Google Scholar
  • Lynch, M., Walsh, B. Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, 1998.Google Scholar
  • Oribe, Y., Kohno, K. (2000) Traits of growth rate in the intraspecific crossbreeds of Picea glehnii and in the species hybrids from Picea glehnii and Picea abies. Bull. Forest Tree Breed. Inst. 17:127–134. In Japanese with English summary.Google Scholar
  • Panshin, A.J., de Zeeuw, C. Text Book of Wood Technology. McGraw-Hill Book Co., New York, 1980.Google Scholar
  • Senft, J.F., Bendtsen, B.A. (1985) Measuring microfibrilar angles using lightmicroscopy. Wood Fiber Sci. 17:564–567.Google Scholar
  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/.
  • Rozenberg, P., Cahalan, C. (1997) Spruce and wood quality: genetic aspects (a review). Silvae Genet. 46:270–279.Google Scholar
  • Yamashita, K., Kubojima, Y., Katsuki, T., Akashi, K. (2010) Wood properties of Picea koyamae: within-tree variation of grain angle, tracheid length, microfibril angle, wood density and shrinkage. Bull. FFPRI. 414:19–29.Google Scholar
  • Zobel, B.J., van Buijtenen, J.P. Wood Variation: Its Causes and Control. Springer-Verlag, Berlin, Heidelberg, 1989.Google Scholar

About the article

Corresponding author: Futoshi Ishiguri, Faculty of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Japan, e-mail: 

Received: 2014-02-20
Accepted: 2014-09-26
Published Online: 2014-10-25
Published in Print: 2015-07-01

Citation Information: Holzforschung, ISSN (Online) 1437-434X, ISSN (Print) 0018-3830, DOI: https://doi.org/10.1515/hf-2014-0052.
©2015 by De Gruyter. Copyright Clearance Center
For further details log on website :
https://www.degruyter.com/view/j/hfsg.2015.69.issue-5/hf-2014-0052/hf-2014-0052.xml?rskey=BCyRzR&result=9

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...