Blog List

Tuesday 31 May 2016

Keratin/Polyvinyl Alcohol Blend Films Cross-Linked by Dialdehyde Starch and Their Potential Application for Drug Release

Title
Keratin/Polyvinyl Alcohol Blend Films Cross-Linked by Dialdehyde Starch and Their Potential Application for Drug Release

Author 
Yao Dou; Buning Zhang; Ming He; Guoqiang Yin; Yingde Cui; Irina N. Savina (2015)

Publisher: Multidisciplinary Digital Publishing Institute
Journal: Polymers
Languages: English
Types: Article
Subjects:  dialdehyde starchScience (General)degradable filmQfeather keratinPVAeco-friendly materialQ1-390Science
Identifiers:doi:10.3390/polym7030580

Abstract 

Feather keratin (FK) extracted from feathers represents a valuable source of biodegradable and biocompatible polymer. The aim of this study was the development and characterization of blended films based on FK and polyvinyl alcohol (PVA) cross-linked by dialdehyde starch (DAS) for a potential drug release application. The compatibility of FK/PVA was improved when cross-linked by DAS: the relative crystallinity of the PVA/FK film slightly decreased, and the enthalpy value for the melting peak decreased by about 50% for the cross-linked films. The total soluble mass of all blend films in water was below 35% at 37 °C, indicating a good stability of the films in water. The results of the Rhodamine B dye (as a model drug) release tests showed that the release rates decreased with increasing DAS content. DAS-induced cross-linking improves several important properties of the FK/PVA films, such as the compactness, the compatibility, and the stability in water. These improvements offer the potential to expand the application of FK films in the biomaterial field.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!
    1. Rocha Plácido Moore, G.; Maria Martelli, S.; Gandolfo, C.; José do Amaral Sobral, P.; Borges Laurindo, J. Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocoll. 2006, 20, 975-982.
    2. Kundu, B.; Kurland, N.E.; Yadavalli, V.K.; Kundu, S.C. Isolation and processing of silk proteins for biomedical applications. Int. J. Biol. Macromol. 2014, 70, 70-77.
    3. Song, N.-B.; Jo, W.-S.; Song, H.-Y.; Chung, K.-S.; Won, M.; Song, K.B. Effects of plasticizers and nano-clay content on the physical properties of chicken feather protein composite films. Food Hydrocoll. 2013, 31, 340-345.
    4. Verbeek, C.J.R.; van den Berg, L.E. Recent developments in thermo-mechanical processing of proteinous bioplastics. Recent Pat. Mater. Sci. 2009, 2, 171-189.
    5. Lasekan, A.; Abu Bakar, F.; Hashim, D. Potential of chicken by-products as sources of useful biological resources. Waste Manag. 2013, 33, 552-565.
    6. Akhlaghi, S.; Sharif, A.; Kalaee, M.; Nouri, A.; Manafi, M. Morphology, nanomechanical and thermodynamic surface characteristics of nylon 6/feather keratin blend films: An atomic force microscopy investigation. Polym. Int. 2012, 61, 646-656.
    7. Flores-Hernández, C.; Colín-Cruz, A.; Velasco-Santos, C.; Castaño, V.; Rivera-Armenta, J.; Almendarez-Camarillo, A.; García-Casillas, P.; Martínez-Hernández, A. All green composites from fully renewable biopolymers: Chitosan-starch reinforced with keratin from feathers. Polymers 2014, 6, 686-705.
    8. Jin, E.; Reddy, N.; Zhu, Z.; Yang, Y. Graft polymerization of native chicken feathers for thermoplastic applications. J. Agric. Food Chem. 2011, 59, 1729-1738.
    9. Aluigi, A.; Vineis, C.; Ceria, A.; Tonin, C. Composite biomaterials from fibre wastes: Characterization of wool-cellulose acetate blends. Compos. A 2008, 39, 126-132.
    10. Martelli, S.M.; Moore, G.R.P.; Laurindo, J.B. Mechanical properties, water vapor permeability and water affinity of feather keratin films plasticized with sorbitol. J. Polym. Environ. 2006, 14, 215-222.
    11. Barone, J.R.; Schmidt, W.F. Nonfood applications of proteinaceous renewable materials. J. Chem. Educ. 2006, 83, 1003-1009.
    12. Prasong, S.; Wasan, T. Preparation and characterization of hair keratin/gelatin blend films. Pak. J. Biol. Sci. 2011, 14, 351-356.
    13. Tanabe, T.; Okitsu, N.; Tachibana, A.; Yamauchi, K. Preparation and characterization of keratin-chitosan composite film. Biomaterials 2002, 23, 817-825.
    14. Tian-Yu, K.; Dong-Xia, L.; Xu-Hong, Y. Preparation and properties of keratin/cmc blend membranes. Adv. Mater. Res. 2013, 647, 190-194.
    15. Vasconcelos, A.; Freddi, G.; Cavaco-Paulo, A. Biodegradable materials based on silk fibroin and keratin. Biomacromolecules 2008, 9, 1299-1305.
    16. Kavitha, A.; Boopalan, K.; Radhakrishnan, G.; Sankaran, S.; Das, B.N.; Sastry, T.P. Preparation of feather keratin hydrolyzate-gelatin composites and their graft copolymers. J. Macromol. Sci. A. 2005, 42, 1703-1713.
    17. Bertini, F.; Canetti, M.; Patrucco, A.; Zoccola, M. Wool keratin-polypropylene composites: Properties and thermal degradation. Polym. Degrad. Stab. 2013, 98, 980-987.
    18. Subramanian, U.M.; Kumar, S.V.; Nagiah, N.; Sivagnanam, U.T. Fabrication of polyvinyl alcohol-polyvinylpyrrolidone blend scaffolds via electrospinning for tissue engineering applications. Int. J. Polym. Mater. 2014, 63, 462-470.
    19. Mao, Y.; Mohanty, P.; Ghosh, G. Biomimetic apatite-coated porous pva scaffolds promote the growth of breast cancer cells. Mater. Sci. Eng. C 2014, 44, 310-316.
    20. Alves, P.M.A.; Carvalho, R.A.; Moraes, I.C.F.; Luciano, C.G.; Bittante, A.M.Q.B.; Sobral, P.J.A. Development of films based on blends of gelatin and poly(vinyl alcohol) cross linked with glutaraldehyde. Food Hydrocoll. 2011, 25, 1751-1757.
    21. Limpan, N.; Prodpran, T.; Benjakul, S.; Prasarpran, S. Properties of biodegradable blend films based on fish myofibrillar protein and polyvinyl alcohol as influenced by blend composition and ph level. J. Food Eng. 2010, 100, 85-92.
    22. Su, J.-F.; Yuan, X.-Y.; Huang, Z.; Xia, W.-L. Properties stability and biodegradation behaviors of soy protein isolate/poly (vinyl alcohol) blend films. Polym. Degrad. Stab. 2010, 95, 1226-1237.
    23. Wang, X.; Yucel, T.; Lu, Q.; Hu, X.; Kaplan, D.L. Silk nanospheres and microspheres from silk/PVA blend films for drug delivery. Biomaterials 2010, 31, 1025-1035.
    24. Park, M.; Kim, B.-S.; Shin, H.K.; Park, S.-J.; Kim, H.-Y. Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. Mater. Sci. Eng. C 2013, 33, 5051-5057.
    25. Figueiredo, K.C.S.; Alves, T.L.M.; Borges, C.P. Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J. Appl. Polym. Sci. 2009, 111, 3074-3080.
    26. Rhim, J.W.; Gennadios, A.; Weller, C.L.; Cezeirat, C.; Hanna, M.A. Soy protein isolate dialdehyde starch films. Ind. Crop. Prod. 1998, 8, 195-203.
    27. Rhim, J.W.; Gennadios, A.; Handa, A.; Weller, C.L.; Hanna, M.A. Solubility, tensile, and color properties of modified soy protein isolate films. J. Agric. Food Chem. 2000, 48, 4937-4941.
    28. Langmaler, F.; Mokrejs, P.; Kolomamik, K.; Mladek, M. Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag. 2008, 28, 549-556.
    29. Parris, N.; Coffin, D.R. Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films. J. Agric. Food Chem. 1997, 45, 1596-1599.
    30. Mokrejs, P.; Langmaier, F.; Janacova, D.; Mladek, M.; Kolomaznik, K.; Vasek, V. Thermal study and solubility tests of films based on amaranth flour starch-protein hydrolysate. J. Therm. Anal. Calorim. 2009, 98, 299-307.
    31. Ustunol, Z.; Mert, B. Water solubility, mechanical, barrier, and thermal properties of cross-linked whey protein isolate-based films. J. Food Sci. 2004, 69, 129-133.
    32. Dou, Y.; Zhang, B.; He, M.; Yin, G.; Cui, Y. Preparation and physicochemical properties of dialdehyde starch crosslinked feather keratin/pva composite films. J. Macromol. Sci. A 2014, 51, 1009-1015.
    33. Ramos, O.L.; Reinas, I.; Silva, S.I.; Fernandes, J.C.; Cerqueira, M.A.; Pereira, R.N.; Vicente, A.A.; Fatima Pocas, M.; Pintado, M.E.; Xavier Malcata, F. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 2013, 30, 110-122.
    34. Tsukada, M.; Freddi, G.; Crighton, J.S. Structure and compatibility of poly(vinyl alcohol)-silk fibroin (PVA/SA) blend films. J. Polym. Sci. B Polym. Phys. 1994, 32, 243-248.
    35. Costa-Júnior, E.S.; Barbosa-Stancioli, E.F.; Mansur, A.A.P.; Vasconcelos, W.L.; Mansur, H.S. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr. Polym. 2009, 76, 472-481.
    36. Nakano, Y.; Bin, Y.; Bando, M.; Nakashima, T.; Okuno, T.; Kurosu, H.; Matsuo, M. Structure and mechanical properties of chitosan/poly(vinyl alcohol) blend films. Macromol. Symp. 2007, 258, 63-81.
    37. Pereda, M.; Aranguren, M.I.; Marcovich, N.E. Effect of crosslinking on the properties of sodium caseinate films. J. Appl. Polym. Sci. 2010, 116, 18-26.
    38. Hernandez-Munoz, P.; Villalobos, R.; Chiralt, A. Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocoll. 2004, 18, 403-411.
    39. Martucci, J.F.; Ruseckaite, R.A. Tensile properties, barrier properties, and biodegradation in soil of compression-molded gelatin-dialdehyde starch films. J. Appl. Polym. Sci. 2009, 112, 2166-2178.
    40. Elizondo, N.J.; Sobral, P.J.A.; Menegalli, F.C. Development of films based on blends of amaranthus cruentus flour and poly(vinyl alcohol). Carbohydr. Polym. 2009, 75, 592-598.


For further details log on website :

https://www.openaire.eu/search/publication?articleId=dedup_wf_001::4f2ca677b71cd50957718c2bcb24eea8

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...