Blog List

Monday 20 June 2016

TG/FTIR/MS study on the influence of nanoparticles content upon the thermal decomposition of starch/poly(vinyl alcohol) montmorillonite nanocomposites

Published Date
Volume 22, Issue 7, pp 519-536
First online: 

Title 

TG/FTIR/MS study on the influence of nanoparticles content upon the thermal decomposition of starch/poly(vinyl alcohol) montmorillonite nanocomposites

  • Author 
  • Manuela-Tatiana Nistor
  • Cornelia Vasile


Abstract

The effect of the nanoclay content on the thermal decomposition of nanocomposites based on poly(vinyl alcohol)/thermoplastic starch, as intercalated hybrids, has been established. The changes in the decomposition products distribution and their evolution have been investigated by coupled thermogravimetric analysis, Fourier transform infrared spectroscopy, and mass spectrometry. Detailed analysis of the in situ vapor phase showed that the poly(vinyl alcohol)/starch/clay nanocomposites display a completely different distribution pattern of degradation product, depending on nanoclay content. By in situ vapor phase FTIR and MS spectroscopic techniques, both decomposition compounds of the constituent polymers and some new ones, depending on the nanoparticles content, are identified. The effect of the increase in nanoparticles content consists mainly in variation of some volatile compounds evolution, such as formic acid, water, formaldehyde, propionic acid, methanol, acetic acid carbon dioxide, benzene, etc., which in the case of nanocomposites is very complex. Thus, a content of 2–4 wt% organically-modified montmorillonite hinders the decomposition of the poly(vinyl alcohol)/starch blend. Both characteristic temperature of evolution of the main compounds increases by increasing its content and evolution starting time is delayed; while the untreated nanoclay acts like a catalyst, which decreases characteristic temperatures and evolution time with increasing its content. The temperature dependence of the maximum evolution rate of various compounds on the nanoclay content is very complex as, in the case of nanocomposites, of both primary and secondary reactions and transport phenomena occur simultaneously. Generally, this behavior is related to the dispersion of nanoclays in the polymeric matrix.

References

  1. 1.
    Suprakas SR, Masami O (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRef
  2. 2.
    Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials. Smithers Rapra Publishing, Shawbury
  3. 3.
    Pielichowski J, Pielichowski K (1995) Application of thermal analysis for the investigation of polymer degradation processes. J Therm Anal 43:505–508CrossRef
  4. 4.
    Ahmadi M, Moghbeli MR, Shokrieh MM (2012) Shrinkage and mechanical properties of unsaturated polyester reinforced with clay and core–shell rubber. Iran Polym J 21:855–868CrossRef
  5. 5.
    Wu G, Yang F, Tan Z, Ge H, Zhang H (2012) Synthesis of montmorillonite-modified acrylic impact modifiers and toughening of poly(vinyl chloride). Iran Polym J 21:793–798CrossRef
  6. 6.
    Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties. Part I: factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96CrossRef
  7. 7.
    Guo B, Jia D, Cai C (2004) Effects of organo-montmorillonite dispersion on thermal stability of epoxy resin nanocomposites. Eur Polym J 40:1743–1748CrossRef
  8. 8.
    Lim ST, Hyun YH, Choi HJ, John MS (2002) Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites. Chem Mater 14:1839–1844CrossRef
  9. 9.
    Lim ST, Lee CH, Choi HJ, John MS (2003) Solid-like transition of melt-intercalated biodegradable polymer/clay nanocomposites. J Polym Sci Part B Polym Phys 41:2052–2061CrossRef
  10. 10.
    Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450CrossRef
  11. 11.
    Hui-Wang C, Guan-Ben D (2008) Application of MMT in polyesters. Ind Mine Process 7:27–32
  12. 12.
    Hui-Wang C, Guan-Ben D (2009) Practice of PVAc type curing agent for UF resin in plywood production. Adhes in China 30:52–54
  13. 13.
    Patachia S (2003) Blends based on poly(vinyl alcohol) and the products based on this polymer, Chap. 8 in Handbook of polymer blends and composites, Vasile C, AK Kulshereshtha (Eds.). Rapra Technol 4A:285–365
  14. 14.
    Preechawong D, Peesan M, Rujiravanit R, Supaphol P (2004) Preparation and properties of starch/poly(vinyl alcohol) composite foams. Macromol Symp 216:217–227CrossRef
  15. 15.
    Sreedhar B, Sairam M, Chattopadhhyay DK, Syamala RPA, Mohan Rao DV (2005) Thermal, mechanical, and surface characterization of starch/poly(vinyl alcohol) blends and borax-crosslinked films. J Appl Polym Sci 96:1313–1322CrossRef
  16. 16.
    Follain N, Joly C, Dole P, Bliard C (2005) Properties of starch based blends. Part 2. Influence of poly vinyl alcohol addition and photocrosslinking on starch based materials mechanical properties. Carbohydr Polym 60:185–192CrossRef
  17. 17.
    Cinelli P, Chellini E, Gordon SH, Imam SH (2003) Characteristics and degradation of hybrid composite films prepared from PVA, starch and lignocellulosics. Macromol Symp 197:143–156CrossRef
  18. 18.
    Nistor M-T, Vasile C (2013) Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim 111:1903–1919
  19. 19.
    Dimonie D, Constantin R, Vasilievici G, Popescu MC, Garea S (2008) The dependence of the XRD morphology of some bionanocomposites on the silicate treatment. J Nanomater, Article ID 538421
  20. 20.
    Dimonie D, Radovici C, Trandafir I, Pop SF, Dumitriu I, Fierascu R, Jecu L, Petrea C, Zaharia C, Coşerea R (2011) Some aspects concerning the silicate delamination for obtaining polymeric bio-hybrids based on starch. Rev Roum Chim 56:685–690
  21. 21.
    Dimonie D, Socoteanu R, Doncea S, Pop FS, Petre C, Dumitriu I, Fierascu R (2011) The miscibility estimation of some nanocomposites based on starch. e-Polymers 90
  22. 22.
    Dimonie D, Kelnar I, Socoteanu R, Darie RN, Pop FS, Zaharia C, Petrea C, Nemteanu M, Coserea RM (2010) The influence of miscibility and micro–structure on the surface defects of some starch bio–hybrides. Materiale Plastice 47:486–491
  23. 23.
    Pascu M-C, Popescu M-C, Vasile C (2008) Surface modifications of some nanocomposites containing starch. J Phys D: Appl Phys 41:175407
  24. 24.
    Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B: Polym Lett 4:323–328CrossRef
  25. 25.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19CrossRef
  26. 26.
    Paul MA, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposites materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450CrossRef
  27. 27.
    Zhai H, Xu W, Guo H, Zhou Z, Shen S, Song Q (2004) Preparation and characterization of PE and PE-g-MAH/montmorillonite nanocomposites. Eur Polym J 40:2539–2545CrossRef
  28. 28.
    Tang Y, Hu Y, Song L, Zong R, Gui Z, Chen Z, Fan W (2003) Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polym Degrad Stabil 82:127–131CrossRef
  29. 29.
    Qin H, Zhang S, Zhao C, Feng M, Yang M, Shu Z, Yang S (2004) Thermal stability and flammability of polypropylene/montmorillonite composites. Polym Degrad Stabil 85:807–813CrossRef
  30. 30.
    Wang J, Chen Y, Wang J (2006) Preparation and properties of a novel elastomeric polyurethane/organic montmorillonite nanocomposite. J Appl Polym Sci 99:3578–3585CrossRef
  31. 31.
    Vasile C, Stoleriu A, Popescu MC, Duncianu C, Kelnar I, Dimonie D (2008) Morphology and thermal properties of some green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. Cell Chem Tech 42:549–568
  32. 32.
    Gilman JW, VanderHart DL, Kashiwagi T (1994) Thermal decomposition chemistry of poly(vinyl alcohol) char characterization and reactions with bismaleimides, Chapter 11 in Fire and Polymers. II: materials and test for hazard prevention. Am Chem Soc. ACS Symp Ser 599(11):161
  33. 33.
    Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem 50:3912–3918CrossRef
  34. 34.
    Zhang X, Golding J, Burger I (2002) Thermal decomposition chemistry of starch studied by 13C high resolution solid-state NMR spectroscopy. Polymer 43:5791–5796CrossRef
  35. 35.
    Mano JF, Koniarova D, Reis RL (2003) Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J Mater Sci: Mater Medicine 14:127–135CrossRef
  36. 36.
    Bryce DJ, Greenwood CT (1963) The thermal degradation of starch. Part III. The formation of decomposition products from starch and related materials at temperatures between 175 °C and 400 °C. Starch-Stärke 15:359–363CrossRef
  37. 37.
    Su S, Wilkie CA (2004) The thermal degradation of nanocomposites that contain an oligomeric ammonium cation on the clay. Polym Degrad Stabil 83:347–362CrossRef
  38. 38.
    Zheng P, Ling XK (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stabil 92:1061–1071CrossRef
  39. 39.
    Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stabil 93:260–262CrossRef
  40. 40.
    Zhou XY, Jia DM, Cui YF, Xie D (2009) Kinetics analysis of thermal degradation reaction of PVA and PVA/starch blends. J Reinf Plast Compos 28:2771–2780CrossRef
  41. 41.
    NIST Mass Spec Data Center, SE Stein (2005) “Mass Spectra” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69. In: PJ Linstrom, WG Mallard (eds), National Institute of Standards and Technology, Gaithersburg, 20899. (http://​webbook.​nist.​gov)
  42. 42.
  43. 43.
    Tietz M, Buettner A, Conde-Petit B (2008) Changes in structure and aroma release from starch–aroma systems upon α-amylase addition. Eur Food Res Technol 227:1439–1446CrossRef
  44. 44.
    Tietz M, Buettner A, Conde-Petit B (2008) Interaction between starch and aroma compounds as measured by proton transfer reaction mass spectrometry (PTR-MS). Food Chem 108:1192–1199CrossRef
  45. 45.
    Jang BN, Wilkie CA (2005) The thermal degradation of polystyrene nanocomposites. Polymer 46:2933–2942CrossRef
  46. 46.
    Jang BN, Wilkie CA (2005) The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites. Polymer 46:3264–3274CrossRef


For further details log on website :
http://link.springer.com/article/10.1007/s13726-013-0152-4

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...