Published Date
First online:
Title
Mapping the relative risk of surface water acidification based on cumulative acid deposition over the past 25 years in Japan
- Author
- Naoyuki Yamashita
- , Hiroyuki Sase
- , Tsuyoshi Ohizumi
- , Junichi Kurokawa
- , Toshimasa Ohara
- , Yu Morino
- , Masatoshi Kuribayashi
- , Seiichi Ohta
- , Shinji Kaneko
- and 3 more
Abstract
Sensitivity maps of atmospheric acid deposition in Japan have not been updated in 20 years. Here, we propose new relative risk maps of surface water acidification in forests based on a weighted overlay of cumulative potential acid deposition (CPAD) simulated for a 25-year period (1981–2005), including the sensitivities of soil and bedrock to acidification. We assumed that relative acidification risk is high in areas that exhibit high sensitivities of soil and bedrock to acid and have received a large amount of cumulative acid deposition over the past several decades. We aggregated fine soil and bedrock maps into a 20-km mesh for overlay onto an 80-km mesh map of CPAD by considering their spatial structures in Japan. Allocation of the weights among CPAD and soil and bedrock sensitivities was performed based on observational trends in river pH over the past 30 years. The resulting risk map for surface water acidification showed that large areas of western Japan, as well as smaller areas of Hokkaido, Tohoku, Kanto, and Kyushu, are at high risk of surface water acidification. Seventy-seven percent of all rivers for which a declining trend in pH was observed from 2001 to 2009 were also high-risk areas. Acid deposition might be one factor controlling surface water acidification in areas with high bedrock sensitivity, in addition to high CPAD and soil sensitivity, although the risk of soil acidification remains unclear.
References
- Acid Deposition Monitoring Network in East Asia (EANET) (2014) Data report on the acid deposition in the East Asian Region 2013. Network Center for EANET, Niigata. http://www.eanet.cc/product/index.html
- Endo T, Yagoh H, Sato K, Matsuda K, Hayashi K, Noguchi I, Sawada K (2011) Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008. Atmos Environ 45:1259–1267CrossRef
- Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–733CrossRef
- Gherini SA, Mok L, Hudson RJ, Davis GF, Chen CW, Goldstein RA (1985) The ILWAS model: formulation and application. In: Ilwas Project (ed) Integrated lake-watershed acidification. Springer, Berlin, pp 425–459
- Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, Oxford
- Hayashi K, Sanada J, Yamada K, Harasawa H, Nishioka S (1995) Calculation of critical load of acid deposition in Japan using steady-state mass balance model. Environ Inf Sci Extra Pap Environ Information Sci 9:69–74 (in Japanese with English abstract)
- Hettelingh J-P, Posch M, De Smet P, Downing R (1995) The use of critical loads in emission reduction agreements in Europe. Water Air Soil Pollut 85:2381–2388CrossRef
- Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18:107–121CrossRef
- IUSS Working Group WRB (2015) World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports no. 106. FAO, Rome
- Japan Environmental Agency (JEA), Japanese Society of Soil Science and Plant Nutrition (JSSPN) (1983) Map for assessing susceptibility of Japanese soils to acid precipitation. JEA/JSSPN, Tokyo (in Japanese with English abstract)
- Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190
- Kitada T, Okamura K, Nakanishi H, Mori H (2000) Production and transport of ozone in local flows over central Japan—comparison of numerical calculation with airborne observation. In: Air pollution modeling and its application XIII. Springer, Berlin, pp 95–106
- Kuribayashi M, Ohara T, Morino Y, Uno I, Kurokawa J, Hara H (2012) Long-term trends of sulfur deposition in East Asia during 1981–2005. Atmos Environ 59:461–475CrossRef
- Kurita H, Ueda H (2006) Long-term decrease of pH of river and lake water in the upper-most stream part of the mountainous region in Central Japan—decrease of pH in past 30 years in relation with acid rain. J Jpn Soc Atmos Environ 41:45–64 (in Japanese with English abstract)
- Kurokawa J, Ohara T, Uno I, Hayasaki M, Tanimoto H (2009) Influence of meteorological variability on interannual variations of springtime boundary layer ozone over Japan during 1981–2005. Atmos Chem Phys 9:6287–6304CrossRef
- Kuylenstierna JC, Chadwick MJ (1989) The relative sensitivity of ecosystems in Europe to the indirect effects of acidic depositions. In: Kamari J, Brakke D, Jenkins A, Norton S, Wright R (eds) Regional acidification models. Springer, Berlin, pp 3–21CrossRef
- Lu Z, Zhang Q, Streets DG (2011) Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010. Atmos Chem Phys 11:9839–9864CrossRef
- Matsubara H, Morimoto S, Sase H, Ohizumi T, Sumida H, Nakata M, Ueda H (2008) Long-term declining trends in river water pH in Central Japan. Water Air Soil Pollut 200:253–265CrossRef
- Ministry of the Environment of Japan (MOEJ) (2014) Report of the long term national acid deposition monitoring in Japan (JFY2008–2013). MOEJ, Tokyo (in Japanese)
- Mitchell MJ, Driscoll CT, McHale PJ, Roy KM, Dong Z (2013) Lake/watershed sulfur budgets and their response to decreases in atmospheric sulfur deposition: watershed and climate controls. Hydrol Process 27:710–720CrossRef
- Morino Y, Ohara T, Kurokawa J, Kuribayashi M, Uno I, Hara H (2011) Temporal variations of nitrogen wet deposition across Japan from 1989 to 2008. J Geophys Res 116:D06307
- Nakahara O, Takahashi M, Sase H, Yamada T, Matsuda K, Ohizumi T, Fukuhara H, Inoue T, Takahashi A, Kobayashi H, Hatano R, Hakamata T (2010) Soil and stream water acidification in a forested catchment in central Japan. Biogeochemistry 97:141–158CrossRef
- Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos Chem Phys 7:4419–4444CrossRef
- Ohizumi T, Fukuzaki N, Kusakabe M (1997) Sulfur isotopic view on the sources of sulfur in atmospheric fallout along the coast of the Sea of Japan. Atmos Environ 31:1339–1348CrossRef
- Ohizumi T, Take N, Moriyama N, Suzuki O, Kusakabe M (2001) Seasonal and spatial variations in the chemical and sulfur isotopic composition of acid deposition in Niigata Prefecture, Japan. In: Acid rain 2000. Springer, Berlin, pp 1679–1684
- Ohte N, Tokuchi N (1999) Geographical variation of the acid buffering of vegetated catchments: factors determining the bicarbonate leaching. Glob Biogeochem Cycles 13:969–996CrossRef
- Posch M, Hettelingh J-P, De Smet P (2001) Characterization of critical load exceedances in Europe. Water Air Soil Pollut 130:1139–1144CrossRef
- Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, CambridgeCrossRef
- Schindler DW (1988) Effects of acid rain on freshwater ecosystems. Science 239–4836:149–157CrossRef
- Seto S, Sato M, Tatano T, Kusakari T, Hara H (2007) Spatial distribution and source identification of wet deposition at remote EANET sites in Japan. Atmos Environ 41:9386–9396CrossRef
- Shindo J, Fumoto T (1998) Estimation of acid buffering capacity of soils and its modeling for evaluation of soil acidification. Glob Environ Res 2:95–102
- Shindo J, Takamatsu T, Fumoto T (2001) Prediction of soil chemistry changes due to acidic deposition with a dynamic model: evaluation of the buffering mechanisms regulating soil chemistry based on the model application to field surveys. Jpn J Soil Sci Plant Nutr 72:394–402 (in Japanese with English abstract)
- Smith SJ, Aardenne JV, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116CrossRef
- Ulrich B, Sumner ME (1991) Soil acidity. Springer, BerlinCrossRef
- Van Breemen N, Mulder J, Driscoll C (1983) Acidification and alkalinization of soils. Plant Soil 75:283–308CrossRef
- Yamada T, Inoue T, Fukuhara H, Nakahara O, Izuta T, Suda R, Takahashi M, Sase H, Takahashi A, Kobayashi H, Ohizumi T, Hakamata T (2007) Long-term trends in surface water quality of five lakes in Japan. Water Air Soil Pollut 7:259–266CrossRef
- Yoshikawa S, Yamaguchi S, Hata A (2000) Paleolimnological investigation of recent acidity changes in Sawanoike Pond, Kyoto, Japan. J Paleolimnol 23:285–304CrossRef
- Yoshinaga S, Suzuki Y, Matsukura Y, Kobayashi M, Tadashi A (1994) Mapping of relative sensitivity to acid deposition for Japan Island by utilizing digital national land information. Jpn J Soil Sci Plant Nutr 65:565–568 (in Japanese with English abstract)
For further details log on website :
No comments:
Post a Comment