Wednesday, 16 November 2016

Combined surface drip irrigation and fertigation significantly increase biomass and carbon storage in a Populus × euramericana cv. Guariento plantationPublished Date

Published Date
Volume 21, Issue 6, pp 280–290

Original Article
DOI: 10.1007/s10310-016-0540-7


Cite this article as: 
Yan, XL., Dai, TF., Zhao, D. et al. J For Res (2016) 21: 280. doi:10.1007/s10310-016-0540-7



Author 

  • Xiao-Li Yan
  • Teng-Fei Dai
  • Dehai Zhao
  • Li-Ming Jia

Abstract


Fast-growing poplar plantations are considered of great benefit to both timber production and carbon (C) sequestration, and are increasingly planted for multiple purposes worldwide. Irrigation and fertilization are common management practices in plantations in semiarid regions. However, quantitative investigation of the integrative effect of surface drip irrigation and fertigation (SDIF) on biomass and C storage in poplar plantations remains limited. In this study, we conducted a field experiment on a fast-growing poplar cultivar (Populus × euramericana cv. Guariento) plantation to compare the combination of surface drip irrigation and fertigation in growing seasons with conventional management (control; CK). Experiments repeated over 2 years showed that SDIF significantly increased biomass and C storage in both trees and soil in the plantation compared with the CK. Tree biomass C in SDIF-treated and CK stands after the first year of the experiment (age 5) was 6.20 and 4.05 t C ha−1, respectively, and the difference further increased, i.e., 15.18 and 8.63 t C ha−1, respectively, after the second year of the experiment (age 6). There was 53 and 76 % higher C storage in SDIF-treated trees than in the CK trees after the first and second years of the experiment, respectively. The SDIF increased the soil C concentration, especially in the surface soil at 0- to 40-cm depth. Soil organic C at a depth of 0–60 cm under the SDIF treatment was 45.42, 50.87 and 61.32 t C ha−1 in the 1st, 2nd and 3rd years, respectively, with annual increases of 12 and 21 % between the first and second, and second and third year, respectively. The corresponding soil organic C in the CK was 43.08, 43.57 and 47.92 t C ha−1 in the 1st, 2nd and 3rd years; the annual increases were only 1 and 10 %, respectively. The results confirmed the significant effect of the combined management on C storage in poplar plantations, thus we suggest it can be applied in forestry management, even though it generally did not change C concentrations of tree components.



References

  1. Arevalo CBM, Bhatti JS, Chang SX, Sidders D (2011) Land use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation. Agric Ecosyst Environ 141:342–349. doi:10.1016/j.agee.2011.03.013CrossRefGoogle Scholar
  2. Bhattacharyya R, Kundu S, Srivastva AK, Gupta HS, Prakash V, Bhatt JC (2011) Long term fertilization effects on soil organic carbon pools in a sandy loam soil of the Indian sub-Himalayas. Plant Soil 341:109–124. doi:10.1007/s11104-010-0627-4CrossRefGoogle Scholar
  3. Cai T, Price DT, Orchansky AL, Thomas BR (2011) Carbon, water, and energy exchanges of a hybrid poplar plantation during the first five years following planting. Ecosystems 14:658–671. doi:10.1007/s10021-011-9436-8CrossRefGoogle Scholar
  4. Chen X, Liu J, Deng Q, Yan J, Zhang D (2012) Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest. Plant Soil 357:25–34. doi:10.1007/s11104-012-1145-3CrossRefGoogle Scholar
  5. Coyle DR, Coleman MD (2005) Forest production responses to irrigation and fertilization are not explained by shifts in allocation. For Ecol Manage 208:137–152. doi:10.1016/j.foreco.2004.11.022CrossRefGoogle Scholar
  6. Denef K, Stewart CE, Brenner J, Paustian K (2008) Does long-term center-pivot irrigation increase soil carbon stocks in semi-arid agro-ecosystems? Geoderma 145:121–129. doi:10.1016/j.geoderma.2008.03.002CrossRefGoogle Scholar
  7. Detwiler RP (1986) Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2:67–93CrossRefGoogle Scholar
  8. Dong WY, Qin J, Li JY, Zhao Y, Nie LS, Zhang ZY (2011) Interactions between soil water content and fertilizer on growth characteristics and biomass yield of Chinese white poplar (Populus tomentosa Carr.) seedlings. Soil Sci Plant Nutr 57:303–312. doi:10.1080/00380768.2010.549445CrossRefGoogle Scholar
  9. Dowell RC, Gibbins D, Rhoads JL, Pallardy SG (2009) Biomass production physiology and soil carbon dynamics in short-rotation-grown Populus deltoides and P. deltoides × P. nigrahybrids. For Ecol Manage 257:134–142. doi:10.1016/j.foreco.2008.08.023CrossRefGoogle Scholar
  10. Fang JY, Chen AP (2001) Dynamic forest biomass carbon pools in China and their significance. Acta Bot Sin 43:967–973 (in Chinese)Google Scholar
  11. Fang SZ, Xue J, Tang L (2007) Biomass production and carbon sequestration potential in poplar plantations with different management patterns. J Environ Manage 85:672–679. doi:10.1016/j.jenvman.2006.09.014CrossRefPubMedGoogle Scholar
  12. Fang SZ, Li HL, Sun QX, Chen LB (2010) Biomass production and carbon stocks in poplar-crop intercropping systems: a case study in northwestern Jiangsu, China. Agrofor Syst 79:213–222. doi:10.1007/s10457-010-9307-xCrossRefGoogle Scholar
  13. Feng RF, Yang WQ, Zhang J (2006) Artificial forest management for global change mitigation. Acta Ecol Sin 26:3870–3877 (in Chinese)CrossRefGoogle Scholar
  14. Gillabel J, Denef K, Brenner J, Merckx R, Paustian K (2007) Carbon sequestration and soil aggregation in center-pivot irrigated and dryland cultivated farming systems. Soil Sci Soc Am J 71:1020–1028. doi:10.2136/sssaj2006.0215CrossRefGoogle Scholar
  15. Granier A, Reichstein M, Breda N, Janssens IA, Falge E, Ciais P, Gruenwald T, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Facini O, Grassi G, Heinesch B, Ilvesniemi H, Keronen P, Knohl A, Koestner B, Lagergren F, Lindroth A, Longdoz B, Loustau D, Mateus J, Montagnani L, Nys C, Moors E, Papale D, Peiffer M, Pilegaard K, Pita G, Pumpanen J, Rambal S, Rebmann C, Rodrigues A, Seufert G, Tenhunen J, Vesala I, Wang Q (2007) Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric For Meteorol 143:123–145. doi:10.1016/j.agrformet.2006.12.004CrossRefGoogle Scholar
  16. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.xCrossRefGoogle Scholar
  17. Guo LB, Halliday MJ, Siakimotu SJM, Gifford RM (2005) Fine root production and litter input: its effects on soil carbon. Plant Soil 272:1–10. doi:10.1007/s11104-004-3611-zCrossRefGoogle Scholar
  18. House JI, Prentice IC, Le Quere C (2002) Maximum impacts of future reforestation or deforestation on atmospheric CO2. Glob Chang Biol 8:1047–1052. doi:10.1046/j.1365-2486.2002.00536.xCrossRefGoogle Scholar
  19. Hu YL, Zeng DH, Chang SX, Mao R (2013) Dynamics of soil and root C stocks following afforestation of croplands with poplars in a semi-arid region in northeast China. Plant Soil 368:619–627. doi:10.1007/s11104-012-1539-2CrossRefGoogle Scholar
  20. Hu YL, Hu LL, Zeng DH (2014) Dynamics and sources of soil organic C following afforestation of croplands with poplar in a semi-arid region in northeast China. PLoS One 9:e86640. doi:10.1371/journal.pone.0086640CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huang ZQ, He ZM, Wan XH, Hu ZH, Fan SH, Yang YS (2013) Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant Soil 364:303–314. doi:10.1007/s11104-012-1341-1CrossRefGoogle Scholar
  22. Ibrahim L, Proe MF, Cameron AD (1998) Interactive effects of nitrogen and water availabilities on gas exchange and whole-plant carbon allocation in poplar. Tree Physiol 18:481–487CrossRefPubMedGoogle Scholar
  23. Iivonen S, Kaakinen S, Jolkkonen A, Vapaavuori E, Linder S (2006) Influence of long-term nutrient optimization on biomass, carbon, and nitrogen acquisition and allocation in Norway spruce. Can J For Res 36:1563–1571. doi:10.1139/x06-035CrossRefGoogle Scholar
  24. IPCC (2000) Land use change and forestry. Cambridge University Press, CambridgeGoogle Scholar
  25. Jackson RB, Jobbagy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, le Maitre DC, McCarl BA, Murray BC (2005) Trading water for carbon with biological sequestration. Science 310:1944–1947. doi:10.1126/science.1119282CrossRefPubMedGoogle Scholar
  26. Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi:10.1016/j.geoderma.2006.09.003CrossRefGoogle Scholar
  27. Jia LM, Liu SQ, Zhu LH, Hu JJ, Wang XP (2013) Carbon storage and density of poplars in China. Plant Soil 37:1–7 (in Chinese)Google Scholar
  28. Johnson DW (1992) Effects of forest management on soil carbon storage. Water Air Soil Pollut 64:83–120. doi:10.1007/bf00477097CrossRefGoogle Scholar
  29. Keith H, Jacobsen KL, Raison RJ (1997) Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 190:127–141. doi:10.1023/a:1004279300622CrossRefGoogle Scholar
  30. Kim H-S, Oren R, Hinckley TM (2008) Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiol 28:559–577CrossRefPubMedGoogle Scholar
  31. Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. J Plant Nutr Soil Sci 163:421–431. doi:10.1002/1522-2624(200008)163:4<421:AID-JPLN421>3.0.CO;2-RCrossRefGoogle Scholar
  32. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22. doi:10.1016/j.geoderma.2004.01.032CrossRefGoogle Scholar
  33. Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220:242–258. doi:10.1016/j.foreco.2005.08.015CrossRefGoogle Scholar
  34. Law BE, Williams M, Anthoni PM, Baldocchi DD, Unsworth MH (2000) Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit. Glob Chang Biol 6:613–630. doi:10.1046/j.1365-2486.2000.00339.xCrossRefGoogle Scholar
  35. Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. For Ecol Manage 185:263–273. doi:10.1016/s0378-1227(03)00164-6CrossRefGoogle Scholar
  36. Li YY, Shao MA, Zheng JY, Zhang XC (2005) Spatial-temporal changes of soil organic carbon during vegetation recovery at Ziwuling, China. Pedosphere 15:601–610Google Scholar
  37. Li X, Yi MJ, Son Y, Park PS, Lee KH, Son YM, Kim RH, Jeong MJ (2011) Biomass and carbon storage in an age-sequence of Korean pine (Pinus koraiensis) plantation forests in Central Korea. J Plant Biol 54:33–42. doi:10.1007/s12374-010-9140-9CrossRefGoogle Scholar
  38. Liang WJ, Hu HQ, Liu FJ, Zhang DM (2006) Research advance of biomass and carbon storage of poplar in China. J For Res 17:75–79CrossRefGoogle Scholar
  39. Liang B, Yang X, He X, Murphy DV, Zhou J (2012) Long-term combined application of manure and NPK fertilizers influenced nitrogen retention and stabilization of organic C in loess soil. Plant Soil 353:249–260. doi:10.1007/s11104-011-1028-zCrossRefGoogle Scholar
  40. Lindner M, Green T, Woodall CW, Perry CH, Nabuurs GJ, Sanz MJ (2008) Impacts of forest ecosystem management on greenhouse gas budgets. For Ecol Manage 256:191–193. doi:10.1016/j.foreco.2008.04.005CrossRefGoogle Scholar
  41. Liu ZJ, Dickmann DI (1992) Responses of two hybrid poplar clones to flooding, drought, and nitrogen availability. I. Morphology and growth. Can J Bot 70:2265–2270CrossRefGoogle Scholar
  42. Luo ZB, Calfapietra C, Liberloo M, Scarascia-Mugnozza G, Polle A (2006) Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2(EUROFACE) and N fertilization. Glob Chang Biol 12:272–283. doi:10.1111/j.1365-2486.2005.01091.xCrossRefGoogle Scholar
  43. Maier CA, Kress LW (2000) Soil CO2 evolution and root respiration in 11-year-old loblolly pine (Pinus taeda) plantations as affected by moisture and nutrient availability. Can J For Res 30:347–359CrossRefGoogle Scholar
  44. Mao R, Zeng DH, Hu YL, Li LJ, Yang D (2010) Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant Soil 332:277–287. doi:10.1007/s11104-010-0292-7CrossRefGoogle Scholar
  45. Marland G, Garten CT, Post WM, West TO (2004) Studies on enhancing carbon sequestration in soils. Energy 29:1643–1650. doi:10.1016/j.energy.2004.03.066CrossRefGoogle Scholar
  46. Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387CrossRefPubMedGoogle Scholar
  47. Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. American Society of Agronomy, MadisonGoogle Scholar
  48. Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472. doi:10.1038/35078064CrossRefPubMedGoogle Scholar
  49. Parker JL, Fernandez IJ, Rustad LE, Norton SA (2001) Effects of nitrogen enrichment, wildfire, and harvesting on forest-soil carbon and nitrogen. Soil Sci Soc Am J 65:1248–1255CrossRefGoogle Scholar
  50. Peichl M, Thevathasan N, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–257. doi:10.1007/s10457-005-0361-8CrossRefGoogle Scholar
  51. Raich JW, Schlesinger WH (1992) The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B-Chem Phys Meteorol 44:81–99. doi:10.1034/j.1600-0889.1992.t01-1-00001.xCrossRefGoogle Scholar
  52. Ramniwas, Kaushik RA, Pareek S, Sarolia DK, Singh V (2013) Effect of drip fertigation scheduling on fertilizer use efficiency, leaf nutrient status, yield and quality of ‘Shweta’ guava (Psidium guajava L.) under meadow orcharding. Natl Acad Sci Lett India 36:483–488. doi:10.1007/s40009-013-0162-yCrossRefGoogle Scholar
  53. Sampson DA, Waring RH, Maier CA, Gough CM, Ducey MJ, Johnsen KH (2006) Fertilization effects on forest carbon storage and exchange, and net primary production: a new hybrid process model tor stand management. For Ecol Manage 221:91–109. doi:10.1016/j.foreco.2005.09.010CrossRefGoogle Scholar
  54. Si J, Jia LM, Wei YK, Xing CS, Qi LS, Guo ZX (2012) Carbon storage in fast-growing and high-yield poplar plantations under subsurface drip irrigation. J Beijing For Univ 34:14–18 (in Chinese)Google Scholar
  55. Srivastava P, Kumar A, Behera SK, Sharma YK, Singh N (2012) Soil carbon sequestration: an innovative strategy for reducing atmospheric carbon dioxide concentration. Biodivers Conserv 21:1343–1358. doi:10.1007/s10531-012-0229-yCrossRefGoogle Scholar
  56. Sun BW, Yang XD, Zhang ZH, Ma WJ, Ali A, Huang HX, Yan ER (2013) Relationships between soil carbon pool and vegetation carbon return through succession of evergreen broad-leaved forests in Tiantong region, Zhejiang Province, Eastern China. Chin J Plant Ecol 37:803–810. doi:10.3724/SP.J.1258.2013.00084 (in Chinese)CrossRefGoogle Scholar
  57. Thomas SC, Malczewski G (2007) Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. J Environ Manage 85:659–662. doi:10.1016/j.jetivman.2006.04.022CrossRefPubMedGoogle Scholar
  58. Toenshoff C, Joergensen RG, Stuelpnagel R, Wachendorf C (2013) Dynamics of soil organic carbon fractions one year after the re-conversion of poplar and willow plantations to arable use and perennial grassland. Agric Ecosyst Environ 174:21–39. doi:10.1016/j.agee.2013.04.014CrossRefGoogle Scholar
  59. Tolunay D (2009) Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scand J For Res 24:394–402. doi:10.1080/02827580903164471CrossRefGoogle Scholar
  60. Trost B, Ellmer F, Baumecker M, Meyer-Aurich A, Prochnow A, Drastig K (2014) Effects of irrigation and nitrogen fertilizer on yield, carbon inputs from above ground harvest residues and soil organic carbon contents of a sandy soil in Germany. Soil Use Manage 30:209–218. doi:10.1111/sum.12123Google Scholar
  61. Verlinden MS, Broeckx LS, Zona D, Berhongaray G, De Groote T, Serrano MC, Janssens IA, Ceulemans R (2013) Net ecosystem production and carbon balance of an SRC poplar plantation during its first rotation. Biomass Bioenergy 56:412–422CrossRefGoogle Scholar
  62. Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15:303–377. doi:10.1016/S0065-2504(08)60122-1CrossRefGoogle Scholar
  63. Wang Y, Xi B, Bloomberg M, Moltchanova E, Li G, Jia L (2015) Response of diameter growth, biomass allocation and N uptake to N fertigation in a triploid Populus tomentosaplantation in the North China Plain: ontogenetic shift does not exclude plasticity. Eur J For Res 134:889–898. doi:10.1007/s10342-015-0897-8CrossRefGoogle Scholar
  64. Xi B, Li G, Bloomberg M, Jia L (2014) The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosa in the North China Plain. Aust For 77:159–167. doi:10.1080/00049158.2014.920552CrossRefGoogle Scholar
  65. Xu XL, Cao MK, Li KR (2007) Temporal-spatial dynamics of carbon storage of forest vegetation in China. Prog Geogr 26:1–10Google Scholar
  66. Yan MF, Zhang XS, Jiang Y, Zhou GS (2010) Effects of management practices on forest plantation soil carbon: a review. Chin J Ecol 29:2265–2271 (in Chinese)Google Scholar
  67. Yan J, Xu CY, Wei HX (2013) Response of carbon and nitrogen allocation in two hybrid poplar clones to soil nitrogen in Northern China. J Food Agric Environ 11:1050–1054Google Scholar
  68. Yan MF, Zhou GS, Zhang XS (2014) Effects of irrigation on the soil CO2 efflux from different poplar clone plantations in arid northwest China. Plant Soil 375:89–97. doi:10.1007/s11104-013-1944-1CrossRefGoogle Scholar
  69. Yan XL, Dai TF, Jia LM, Dai LL, Xin FM (2015a) Responses of the fine root morphology and vertical distribution of Populus × euramericana ‘Guariento’ to the coupled effect of water and nitrogen. Chin J Plant Ecol 39:825–837. doi:10.17521/cjpe.2015.0079 (in Chinese)CrossRefGoogle Scholar
  70. Yan XL, Dai TF, Xing CS, Jia LM, Zhang LN (2015b) Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus × euramericana plantation. Acta Ecol Sin 35:3692–3701. doi:10.5846/stxb201308032013 (in Chinese)Google Scholar
  71. Yashiro Y, Lee NYM, Ohtsuka T, Shizu Y, Saitoh TM, Koizumi H (2010) Biometric-based estimation of net ecosystem production in a mature japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. J Plant Res 123:463–472. doi:10.1007/s10265-010-0323-8CrossRefPubMedGoogle Scholar
  72. Zhang XQ (2001) Fine root production and turnover for forest ecosystems. Sci Silvae Sin 37:126–138 (in Chinese)Google Scholar
  73. Zhang Q, Wang C, Wang X, Quan X (2009) Carbon concentration variability of 10 Chinese temperate tree species. For Ecol Manage 258:722–727. doi:10.1016/j.foreco.2009.05.009CrossRefGoogle Scholar
  74. Zhao D, Kane M, Teskey R, Markewitz D, Greene D, Borders B (2014) Impact of management on nutrients, carbon, and energy in aboveground biomass components of mid-rotation loblolly pine (Pinus taeda L.) plantations. Ann For Sci 71:843–851. doi:10.1007/s13595-014-0384-2CrossRefGoogle Scholar
  75. Zhou J, Zhang ZQ, Sun G, Fang XR, Zha TG, McNulty S, Chen JQ, Jin Y, Noormets A (2013) Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. For Ecol Manage 300:33–42. doi:10.1016/j.foreco.2013.01.007CrossRefGoogle Scholar
  76. Zou C, Penfold C, Sands R, Misra RK, Hudson I (2001) Effects of soil air-filled porosity, soil matric potential and soil strength on primary root growth of radiata pine seedlings. Plant Soil 236:105–115. doi:10.1023/a:1011994615014CrossRefGoogle Scholar

For further details log on website :
http://link.springer.com/article/10.1007/s10310-016-0545-2

No comments:

Post a Comment