Blog List

Friday, 4 November 2016

Synthesis and characterization of kraft lignin-graft-polylactide copolymers

Published Date
Volume 50, Issue 6pp 1293–1304

DOI: 10.1007/s00226-016-0847-8

Cite this article as: 
Kim, S.J., Kim, Y.S., Lee, OK. et al. Wood Sci Technol (2016) 50: 1293. doi:10.1007/s00226-016-0847-8

  • Seok Ju Kim
  • Yong Sik Kim
  • Oh-Kyu Lee
  • Byoung-Jun Ahn

The graft polymerization of polylactic acid (PLA) onto methanol-soluble kraft lignin (MeKL) was performed successfully through acylation substitution using chlorine-terminated PLA with a number average of molecular weight (Mn) of 5400–24,000 g/mol. As the Mn value of the PLA used for the graft polymerization process was increased, the obtained MeKL-g-PLA copolymers decreased from 9,000,000 to 1,100,000 g/mol. The structural characteristics of the MeKL-g-PLA copolymers were analyzed using Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies. It was found that the thermal properties of the MeKL-g-PLA copolymers improved slightly, with their glass-transition temperature increasing to a level higher than that of pure PLA. The tensile strengths and elasticity modulus of the MeKL-g-PLA copolymers were independent of the Mn value and were 3.5–3.8 MPa and 0.038–0.045 GPa, respectively.


  1. Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151:342–350CrossRefGoogle Scholar
  2. Alexy A, Košíková B, Pldstránska G (2000) The effect of blending lignin with polyethylene and polypropylene on physical properties. Polymer 41:4901–4908CrossRefGoogle Scholar
  3. ASTM D 3500 (2009) Standard test methods for structural panels in tension. ASTM International, West Conshohocken
  4. Bhattacharya A, Misra BN (2004) Grafting:a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29(8):767–814CrossRefGoogle Scholar
  5. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composities with man-made cellulose and abaca fibres. Compos Part A Appl Sci Manuf 40:404–412CrossRefGoogle Scholar
  6. Bonini C, D’Auria M, Ferri R, Pucciariello R, Sabia AR (2003) Graft copolymers of lignin with electron poor alkenes. J Appl Polym Sci 90(4):1163–1171CrossRefGoogle Scholar
  7. Brosse N, Mohamad Ibrahim MN, Abdul Rahim A (2011) Biomass to bioethanol: initiatives of the future for lignin. ISRN Mater Sci 2011:1–10CrossRefGoogle Scholar
  8. Chung YL, Olsson JV, Li RJ, Frank CW, Waymouth RM, Billington SL, Sattely ES (2013) A renewable lignin-lactide copolymer and application in biobased composites. ACS Sustain Chem Eng 1:1231–1238CrossRefGoogle Scholar
  9. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276CrossRefGoogle Scholar
  10. El-Zawawy WK (2005) Preparation of hydrogel from green polymer. Polym Adv Technol 16:48–54CrossRefGoogle Scholar
  11. Feldman D, Banu D, Manley RSJ, Zhu H (2002) Highly filled blends of a vinylic copolymer with plasticized lignin: thermal and mechanical properties. J Appl Polym Sci 89:2000–2010CrossRefGoogle Scholar
  12. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  13. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84CrossRefGoogle Scholar
  14. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338CrossRefGoogle Scholar
  15. Henton DE, Gruber P, Lunt J, Randall J (2005) Chapter 16: Polylactic acid technology. In: Mohanty AK, Misra M, Drzal LT(eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton. doi:10.1201/9780203508206.ch16
  16. Jacobsen S, Fritz HG (1999) Plasticizing polylactide–the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310CrossRefGoogle Scholar
  17. Kadla JF, Kubo S, Venditti R, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon (NY) 40:2913–2920CrossRefGoogle Scholar
  18. Kim SJ, Kim YS (2013) The analysis of products from base-catalyzed depolymerization of kraft lignin. J Korean Wood Sci Technol 41(6):585–593Google Scholar
  19. Kim YS, Youe WJ, Kim SJ, Lee OK, Lee SS (2015) Preparation of a thermoplastic lignin-based biomaterial through atom transfer radical polymerization. J Wood Chem Technol 35:251–259CrossRefGoogle Scholar
  20. Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31:736–745CrossRefGoogle Scholar
  21. Kubo S, Kadla JF (2004) Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 37:6904–6911CrossRefGoogle Scholar
  22. Li H, McDonald AG (2014) Fractionation and characterization of industrial lignins. Ind Crops Prod 62:67–76CrossRefGoogle Scholar
  23. Li J, He Y, Inoue Y (2003) Thermal and mechanical properties of biodegradable blends of poly(l-lactic acid) and lignin. Polym Int 52:949–955CrossRefGoogle Scholar
  24. Li H, Sivasankarapillai G, McDonald AG (2015) Highly biobased thermally-stimulated shape memory copolymeric elastomers derived from lignin and glycerol-adipic acid based hyperbranched prepolymer. Ind Crops Prod 67:143–154CrossRefGoogle Scholar
  25. Meister JJ, Patil DR, Channell H (1984) Properties and applications of lignin–acrylamide graft copolymer. J Appl Polym Sci 29:3457–3477CrossRefGoogle Scholar
  26. Moon S, Lee C-W, Taniguchi I, Miyamoto M, Kimura Y (2001) Melt/solid polycondensation of l-lactic acid: an alternative route to poly(l-lactic acid) with high molecular weight. Polymer (Guildf) 42:5059–5062CrossRefGoogle Scholar
  27. Mousavioun P, Doherty WOS, George G (2010) Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crops Prod 32:656–661CrossRefGoogle Scholar
  28. Murariu M, Ferreira ADS, Alexandre M, Dubois P (2008) Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol 19:636–646CrossRefGoogle Scholar
  29. Ouyang W, Huang Y, Luo H, Wang D (2012) Poly(lactic acid) blended with celluloytic enzyme lignin: mechanical and thermal properties and morphology evaluation. J Polym Environ 20:1–9CrossRefGoogle Scholar
  30. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34:29–41CrossRefGoogle Scholar
  31. Pucciariello R, Bonini C, D’Auria M, Villani V, Giammarino G, Gorrasi G (2008) Polymer blends of steam-explosion lignin and poly(ε-caprolactone) by high-energy ball milling. J Appl Polym Sci 109:309–313CrossRefGoogle Scholar
  32. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRefGoogle Scholar
  33. Roberts VM, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem A Eur J 17:5939–5948CrossRefGoogle Scholar
  34. Su L, Xing Z, Wang D, Xu G, Ren S, Fang G (2013) Mechanical properties research and structural characterization of alkali lignin/poly(vinyl alcohol) reaction films. BioResources 8:3532–3543CrossRefGoogle Scholar
  35. Tasaka F, Ohya Y, Ouchi T (2001) One-pot synthesis of novel branched polylactide through the copolymerization of lactide with mevalonolactone. Macromol Rapid Commun 22:820–824CrossRefGoogle Scholar
  36. Xiao RZ, Zeng ZW, Zhou GL, Wang JJ, Li FZ, Wang AM (2010) Recent advances in PEG-PLA block copolymer nanoparticles. Int J Nanomed 5:1057–1065Google Scholar
  37. Youe WJ, Lee SM, Lee SS, Lee SH, Kim YS (2016) Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. Int J Biol Macromol 82:497–504CrossRefPubMedGoogle Scholar
  38. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599CrossRefPubMedGoogle Scholar

For further details log on website :

No comments:

Post a Comment

The Future of Smart City Technology, From an MIT Professor

Carlo Ratti’s The City of Tomorrow examines how tech will shift and reshape the urban landscape Author By  Patrick Sisson Screenshot...