Thursday, 3 November 2016

The effect of air plasma treatment at atmospheric pressure on thermally modified wood surfaces

Published Date
Volume 50, Issue 6pp 1227–1241

Original
DOI: 10.1007/s00226-016-0856-7

Cite this article as: 
Altgen, D., Avramidis, G., Viöl, W. et al. Wood Sci Technol (2016) 50: 1227. doi:10.1007/s00226-016-0856-7

Author
  • Daniela Altgen
  • Georg Avramidis
  • Wolfgang Viöl
  • Carsten Mai
Abstract

This study tests the hypothesis that thermal modification of wood influences the effectivity of air plasma treatment. Micro-veneers of European beech, Scots pine and Norway spruce were thermally modified at two different temperatures and subsequently plasma-treated for 1 and 3 s. The veneer surfaces were characterized in terms of morphology, wetting behaviour and surface chemistry. No severe changes in the veneer surfaces due to plasma treatment were observed by scanning electron microscopy. Plasma treatment increased surface free energy and wettability by water and urea–formaldehyde adhesive; it was more effective on thermally modified wood than on unmodified wood. X-ray photoelectron spectroscopy revealed a similar distribution of oxygen-containing functional groups on the wood surface after plasma treatment of thermally modified and unmodified beech wood. It is suggested that enhanced wettability through plasma treatment is due to the generation of carboxyl groups within the lignin network, which contribute to the polar part of the surface free energy. The high effectiveness of plasma treatment on thermally modified wood might thus be explained by its high relative proportion of lignin.

References
  1. Acda MN, Devera EE, Cabangon RJ, Ramos HJ (2012) Effects of plasma modification on adhesion properties of wood. Int J Adhes Adhes 32:70–75Google Scholar
  2. Ahajji A, Diouf PN, Aloui F, Elbakali I, Perrin D, Merlin A, George B (2009) Influence of heat treatment on antioxidant properties and colour stability of beech and spruce wood and their extractives. Wood Sci Technol 43(1–2):69–83CrossRefGoogle Scholar
  3. Alen R, Kotilainen R, Zaman A (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Sci Technol 36(2):163–171CrossRefGoogle Scholar
  4. Altgen D, Bellmann M, Wascher R, Viöl W, Mai C (2015a) Enhancing mechanical properties of particleboards using plasma treated wood particles. Eur J Wood Wood Prod 73(2):219–223CrossRefGoogle Scholar
  5. Altgen D, Bellmann M, Wascher R, Mai C (2015b) Enhanced urea-formaldehyde adhesive spreading on plasma treated wood particles. Eur J Wood Wood Prod 74(4):617–620CrossRefGoogle Scholar
  6. Asandulesa M, Topala I, Dumitrascu N (2010) Effect of helium DBD plasma treatment on the surface of wood samples. Holzforschung 64(2):223–227CrossRefGoogle Scholar
  7. Avramidis G, Hauswald E, Lyapin A, Militz H, Viöl W, Wolkenhauer A (2009) Plasma treatment of wood and wood-based materials to generate hydrophilic or hydrophobic surface characteristics wood. Mater Sci Eng 1–2:52–60Google Scholar
  8. Avramidis G, Scholz G, Nothnick E, Militz H, Viöl W, Wolkenhauer A (2010) Improved bondability of wax-treated wood following plasma treatment. Wood Sci Technol 45(2):359–368CrossRefGoogle Scholar
  9. Avramidis G, Militz H, Avar I, Viöl W, Wolkenhauer A (2012) Improved absorption characteristics of thermally modified beech veneer produced by plasma treatment. Eur J Wood Wood Prod 70(5):545–549CrossRefGoogle Scholar
  10. Aydin I, Demirkir C (2010) Activation of spruce wood surfaces by plasma treatment after long terms of natural surface inactivation. Plasma Chem Plasma Process 30(5):697–706CrossRefGoogle Scholar
  11. Bourgois J, Bartholin MC, Guyonnet R (1989) Thermal-treatment of wood—analysis of the obtained product. Wood Sci Technol 23(4):303–310CrossRefGoogle Scholar
  12. Briggs D, Beamson G (2000) XPS database of polymers in high resolution. Surface Spectra Ltd., ManchesterGoogle Scholar
  13. Busnel F, Blanchard V, Pregent J, Stafford L, Riedl B, Blanchet P, Sarkissian A (2010) Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure. J Adhes Sci Technol 24(8–10):1401–1413CrossRefGoogle Scholar
  14. Custódio J, Broughton J, Cruz H, Winfield P (2009) Activation of timber surfaces by flame and corona treatments to improve adhesion. Int J Adhes Adhes 29(2):167–172CrossRefGoogle Scholar
  15. Eliasson B, Kogelschatz U (1991) Modeling and applications of silent discharge plasmas. IEEE Trans Plasma Sci 19(2):309–323CrossRefGoogle Scholar
  16. Eriksson M, Notley SM, Wågberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromolecules 8(3):912–919PubMedCrossRefGoogle Scholar
  17. Fengel D (1966) On changes of wood and its components in temperature range up to 200 °C. Part II. The hemicelluloses in untreated and thermally treated sprucewood. Holz Roh-Werkst 24(3):98–109CrossRefGoogle Scholar
  18. Fowkes FM (1964) Attractive forces at interfaces. Ind Eng Chem 56(12):40–52CrossRefGoogle Scholar
  19. Gellerstedt F, Gatenholm P (1999) Surface properties of lignocellulosic fibers bearing carboxylic groups. Cellulose 6(2):103–121CrossRefGoogle Scholar
  20. Gérardin P, Petrič M, Petrissans M, Lambert J, Ehrhrardt JJ (2007) Evolution of wood surface free energy after heat treatment. Polym Degrad Stabil 92(4):653–657CrossRefGoogle Scholar
  21. Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stabil 89(1):1–5CrossRefGoogle Scholar
  22. Halliwell G (1965) Catalytic decomposition of cellulose under biological conditions. Biochem J 95:35–40PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, ChichesterCrossRefGoogle Scholar
  24. Huang H, Wang BJ, Dong L, Zhao M (2011) Wettability of hybrid poplar veneers with cold plasma treatments in relation to drying conditions. Dry Technol 29(3):323–330CrossRefGoogle Scholar
  25. Inari GN, Petrissans M, Lambert J, Ehrhardt JJ, Gérardin P (2006) XPS characterization of wood chemical composition after heat-treatment. Surf Interf Anal 38(10):1336–1342CrossRefGoogle Scholar
  26. Jamali A, Evans P (2011) Etching of wood surfaces by glow discharge plasma. Wood Sci Technol 45(1):169–182CrossRefGoogle Scholar
  27. Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2(2):66–81CrossRefGoogle Scholar
  28. Kamdem DP, Pizzi A, Triboulot MC (2000) Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation. Holz Roh-Werkst 58(4):253–257CrossRefGoogle Scholar
  29. Kang GJ, Zhang YJ, Ni YG, Vanheiningen ARP (1995) Influence of lignins on the degradation of cellulose during ozone treatment. J Wood Chem Technol 15(4):413–430CrossRefGoogle Scholar
  30. Klarhöfer L, Viöl W, Maus-Friedrichs W (2010) Electron spectroscopy on plasma treated lignin and cellulose. Holzforschung 64(3):331–336CrossRefGoogle Scholar
  31. Kollmann F, Schneider A (1963) On the sorption-behaviour of heat stabilized wood. Holz Roh-Werkst 21(3):77–85CrossRefGoogle Scholar
  32. Král P, Ráhel’ J, Stupavská M, Šrajer J, Klímek P, Mishra P, Wimmer R (2015) XPS depth profile of plasma-activated surface of beech wood (Fagus sylvatica) and its impact on polyvinyl acetate tensile shear bond strength. Wood Sci Technol 49(2):319–330CrossRefGoogle Scholar
  33. Kutnar A, Kricej B, Pavlic M, Petric M (2013) Influence of treatment temperature on wettability of Norway spruce thermally modified in vacuum. J Adhes Sci Technol 27(9):963–972CrossRefGoogle Scholar
  34. Metsa-Kortelainen S, Antikainen T, Viitaniemi P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz Roh-Werkst 64(3):192–197CrossRefGoogle Scholar
  35. Notley SM, Norgren M (2010) Surface energy and wettability of spin-coated thin films of lignin isolated from wood. Langmuir 26(8):5484–5490PubMedCrossRefGoogle Scholar
  36. Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2003) The effects of a heat treatment on the behaviour of extractives in softwood studied by FTIR spectroscopic methods. Wood Sci Technol 37(2):109–115CrossRefGoogle Scholar
  37. Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2005) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24(1):13–26CrossRefGoogle Scholar
  38. Nussbaum RM (1999) Natural surface inactivation of Scots pine and Norway spruce evaluated by contact angle measurements. Holz Roh-Werkst 57(6):419–424CrossRefGoogle Scholar
  39. Odraskova M, Rahel J, Zahoranova A, Tino R, Cernak M (2008) Plasma activation of wood surface by diffuse coplanar surface barrier discharge. Plasma Chem Plasma Process 28(2):203–211CrossRefGoogle Scholar
  40. Owens DK, Wendt R (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747CrossRefGoogle Scholar
  41. Popper R, Niemz P, Eberle G (2005) Investigations on the sorption and swelling properties of thermally treated wood. Holz Roh-Werkst 63(2):135–148CrossRefGoogle Scholar
  42. Rabel W (1971) Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren (Some aspects of wetting theory and its application to the study and change of surface properties of polymers) (In German). Farbe und Lack 77(10):997–1005Google Scholar
  43. Sakata I, Morita M, Tsuruta N, Morita K (1993) Activation of wood surface by corona treatment to improve adhesive bonding. J Appl Polym Sci 49(7):1251–1258CrossRefGoogle Scholar
  44. Scheikl M, Dunky M (1998) Measurement of dynamic and static contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface. Holzforschung 52(1):89–94CrossRefGoogle Scholar
  45. Scholz G, Nothnick E, Avramidis G, Krause A, Militz H, Viöl W, Wolkenhauer A (2010) Adhesion of wax impregnated solid beech wood with different glues and by plasma treatment. Eur J Wood Wood Prod 68(3):315–321CrossRefGoogle Scholar
  46. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5(12):4709–4714CrossRefGoogle Scholar
  47. Sivonen H, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56(6):648–654CrossRefGoogle Scholar
  48. Strom G, Carlsson G (1992) Wettability of kraft pulps—effect of surface-composition and oxygen plasma treatment. J Adhes Sci Technol 6:745–761Google Scholar
  49. Wascher R, Avramidis G, Vetter U, Damm R, Peters F, Militz H, Viöl W (2014a) Plasma induced effects within the bulk material of wood veneers. Surf Coat Technol 259:62–67CrossRefGoogle Scholar
  50. Wascher R, Schulze N, Avramidis G, Militz H, Viöl W (2014b) Increasing the water uptake of wood veneers through plasma treatment at atmospheric pressure. Eur J Wood Wood Prod 72(5):685–687CrossRefGoogle Scholar
  51. Wikberg H, Maunu S (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58(4):461–466CrossRefGoogle Scholar
  52. Wolkenhauer A, Avramidis G, Cai Y, Militz H, Viöl W (2007) Investigation of wood and timber surface modification by dielectric barrier discharge at atmospheric pressure. Plasma Process Polym 4:470–474CrossRefGoogle Scholar
  53. Wolkenhauer A, Avramidis G, Militz H, Viöl W (2008) Plasma treatment of heat treated beech wood—investigation on surface free energy. Holzforschung 62(4):472–474CrossRefGoogle Scholar
  54. Wolkenhauer A, Avramidis G, Hauswald E, Militz H, Viöl W (2009) Sanding vs. plasma treatment of aged wood: a comparison with respect to surface energy. Int J Adhes Adhes 29(1):18–22CrossRefGoogle Scholar
  55. Militz H, Altgen M (2014) Processes and properties of thermally modified wood manufactured in Europe. In: Deterioration and protection of sustainable biomaterials, ACS symposium series, vol 1158
  56. Yeh JJ, Lindau I (1985) Atomic subshell photoionization cross sections and asymmetry parameters: 1 ≤ Z ≤ 103. Atom Data Nucl Data 32(1):1–155CrossRefGoogle Scholar
  57. Yildiz S (2002) Effects of heat treatment on water repellence and anti swelling efficiency of beech wood. The International Research Group On Wood Preservation, Document No: IRG/WP 02-40223
  58. Zaman A, Alén R, Kotilainen R (2000) Thermal behavior of Scots pine (Pinus sylvestris) and Silver birch (Betula pendula) at 200–230 C. Wood Fiber Sci 32(2):138–143Google Scholar
  59. Zhou XY et al (2012) Glass transition of oxygen plasma treated enzymatic hydrolysis lignin. Bioresources 7(4):4776–4785Google Scholar

For further details log on website :
http://link.springer.com/article/10.1007/s00226-016-0852-y

No comments:

Post a Comment