Blog List

Monday 1 August 2016

Initiation and Growth of Delamination in Wood and Wood-Based Composites, a Fracture Mechanics Approach

Published Date
Date: 

Title 

Initiation and Growth of Delamination in Wood and Wood-Based Composites, a Fracture Mechanics Approach

  • Author 
  • Voichita Bucur
Abstract 

Fracture Mechanics concept has been applied to wood material as reported during more than fourthly years, by numerous references, review articles and books. Some of them are cited below. (Attack et al. 1961; Porter 1964; Schniewind and Centeno 1973; Schniewind and Lyon 1971, 1973; Schniewind and Pozniak 1971; Leicester 1971, 1973, 1974; Pearson 1974; Jeronimidis 1976, 1980; Schniewind 1977; Barrett 1976, 1981; Schniewind et al. 1982; Valentin and Morlier P 1982; Jung and Murphy 1983; Boatright and Garrett 1983, Triboulot et al. 1982, 1984; Tschegg 1986; Patton – Mallory and Cramer 1987; Gustafsson 1985; Boström 1988, Valentin et al. 1991; Aicher 1992; Aicher et al. 1993, 1998; Stanzl-Tschegg et al. 1994, 1995, Zink et al. 1994, 1995; Gibson and Ashby 1997, Bodner et al.1997; Thuvander and Berglund 1998; Tschegg et al. 2001; Sippola and Frühmann 2002; Cotterell 2002; Reiterer and Sinn 2002; Smith et al. 2003; Vasic and Smith 2002, 2003; Conrad et al. 2003; Nairn 2006; Vasic and Stanzl-Tschegg 2007; Nairn 2007a, b, c; Hofstetter et al. 2007).

References

  1. Aicher S (1992) Fracture energies and size effect law for spruce and oak in mode I. Determination of fracture properties of wood especially in mode II and mixed modes I and II. Proceedings of the RILEM TC 133 Meeting, Bordeaux
  2. Aicher S, Reinhardt HW, Klöck W (1993) Nichtlineares bruch-mechanik-massstabsgesetz für Fichte bei Zugbeanspruchungsenkrecht zur Fasserrichtung. Holz als Roh Werkst 5:385–394
  3. Aicher S, Dill Langer G, Ranta – Maunus A (1998) Duration of load effect in tension perpendicular to the grain of glulam in different climates. Holz Roh-Werkst 56:279–284
  4. Akande JA, Kyanka GH (1990) Evaluation of tensile fracture in aspen using fractographic and theoretical methods. Wood Fiber Sci 22:283–297
  5. Anderson TL (2005) Fracture mechanics: fundamentals and applications. 3 rd edition, CRC, Boca Raton
  6. Ando K, Ohta M (1999) Variability of fracture toughness by the crack tip position in an annual ring of coniferous wood. J Wood Sci 45:275–283
  7. Ashby MF, Eastering KE, Harryson R, Maiti SK (1985) The fracture and toughness of wood. Proc Roy Soc London A 398(1815):261–280
  8. ASTM E 399 (1994) Standard test method for plain strain fracture toughness of metallic materials Annual Book of Standards, American Society for Testing Materials, Philadelphia, PA
  9. Atluri SN (1986) Computational methods in the mechanics of fracture. North Holland, Amstrerdam
  10. Attack D, May WD, Morris EL, Sproule RN (1961) The energy of tensile and cleavage fracture in black spruce. Tappi J 44(8):555–567
  11. Bariska M (1994) Fracture mechanics and wood anatomy. IAWA J 15:199–200
  12. Barrett JD (1976) Effect of crack – front width on fracture toughness of Douglas fir. Eng Fract Mech 8:711–717
  13. Barrett JD (1981) Fracture mechanics and the design of wood structures. Phil Trans Roy Soc London 299(8):217–226
  14. Beismann H, Schweingruber F, Speck T, Körner C (2002) Mechanical properties of spruce and beech wood grown in elevated CO2. Trees 16:511–518
  15. Beismann H, Wilhelmi H, Baillères H, Spatz HC, Bogenrieder A, Speck T (2000) Brittless of twig bases in the genus Salix: fracture mechanics and ecological relevance. J Exp Bot. 51:617–633PubMed
  16. Berto F, Lazzarin P (2007) Relationship between J – integral and the strain energy evaluated in a finite volume surrounding the tip of sharp and blunt V-notches. Int J Solid Struct 44(14/15):4621–4645
  17. Boatright SWJ, Garrett G (1983) The effect of microstructure and stress state on the fracture behavior of wood. J Mat Sci 18:2181–2199
  18. Bodner J, Grüll G, Schlag MG (1996) In-situ fracturing of wood in the scanning electron microscope. Holzforschung 50:487–490
  19. Bodner J, Schlag MG, Grüll G (1997) Fracture initiation and progress in wood specimens stressed in tension. Part I: Clear wood specimens stressed parallel to the grain. Holzforschung 51:479–484; Part II: Compression wood specimens stressed parallel to grain Holzforschung 51:571–576
  20. Bondietti EA, Momoshima N, Shortle WC, Smith KT (1990) A historical perspective on divalent trends in red spruce stemwood and the hypothetical relationship to acid deposition. Can J For Res 20:1850–1858
  21. Borgin K (1971) The cohesive failure of wood studied with the scanning electron microscopy. J Microsc 94(1):1–11
  22. Boström L (1992) Method for determining of the softening behaviour of wood and the applicability of a nonlinear fracture mechanics model. PhD Thesis LUTVDG/TVBM 1012 Lund Institute of Technology, Lund, Sweden
  23. Boström L (1988) The fictitious crack model – A fracture mechanics approach applied on wood. International Conference on Timber Engineering, Seattle DC vol 2:559–565
  24. Boyd JD (1973) Helical fissures in compression wood cells: causative factors and mechanics of development. Wood Sci Technol 7:92–111
  25. Bucur V (2003) Imaging of microscopic structure of wood. Proceedings of the 5th world congress on ultrasonics Paris, pp 299–302. http://​www.​sfa.​asso.​fr/​wcu 2003/procs/webside articles/. Accessed 20 December 2007
  26. Bucur V (2005) Acousics of wood. Springer, Heidelberg
  27. Bucur V, Rasolofosaon PNJ (1998) Dynamic elastic anisotropy and nonlinearity in wood and rock. Ultrasonics 36:813–824
  28. Bucur V, Saied A, Attal J (1995) Identification of wood anatomical elements by acoustic microscopy, 22nd International. Symposium on Acoustical Imaging, Florence, Italy
  29. Bucur V, Herbé C, Nosei G (1994) Annual ring characteristics of Pinus taeda measured by ultrasonic and X-ray techniques. IAWA J 15(2):121–132
  30. Clair B, Gilles Despaux G, Chanson B, Thibaut B (2000) Utilisation de la microscopie acoustique pour l'étude des propriétés locales du bois : étude préliminaire de paramètres expérimentaux. Ann For Sci 57:335–343
  31. Coureau JL, Gustafsson Persson K (2006) Elastic layer model for application to crack propagation problems in timber engineering. Wood Sci Technol 40:275–290
  32. Coureau JL, Gustafsson PJ, Persson K (2006a) Elastic layer model for application to crack propagation problems in timber engineering. Wood Sci Technol 40:275–290
  33. Coureau JL, Morel S, Gustafsson PJ, Lespine C (2006b) Influence of the fracture softening behaviour of wood on load-cod curve and R-curve. Mater Struct 40:97–106
  34. Conrad MPC, Smith GD, Fernlund G (2003) Fracture of solid wood: a review of structure and properties at different length scale. Wood Fiber Sci 35:570–584
  35. Cotterell B (2002) The past, present and future of fracture mechanics. Eng Fract Mech 69:533–553
  36. Davids WG, Landis EN, Vasic S (2003) Lattice models for the prediction of load – induced failure and damage in wood. Wood Fiber Sci 35:120–134
  37. Davims JP, Rubio JC, Abrao AM (2007) Delamination assessment after drilling medium-density fibreboard (MDF) by digital image analysis. Holzforschung 61:294–300
  38. Daudeville L (1999) Fracture in spruce: experiment and numerical analysis by linear and non linear fracture mechanics. Holz Roh Werkst 57:425–432
  39. DeBaise GR (1972) Morphology of wood shear fracture. J Materials 7(4):568 –572
  40. DeBaise GR, Porter AW, Pentoney RE (1966) Morphology and mechanics of wood fracture. Mater Res Stand 6:493–499
  41. Dill – Langer G, Aicher S (2000) Monitoring of microfracture by microscopy and acoustic emission. In Aicher S (ed) Wood and wood fiber composites. University of Stuttgart, Otto Graff – Institute, Department of Wood and Timber Engineering, Stuttgart, pp 93 –104
  42. Dill – Langer G, Lütze S, Aicher S (2002) Microfracture in wood monitored by confocal laser microscope. Wood Sci Technol 36:487–499
  43. Dinwoodie JM (1966) Induction of cell wall dislocations (slip planes) during preparation of microscope sections of wood. Nature 212:525–527
  44. Dinwoodie JM (1968) Failure in timber. Part I. Microscopic changes in cell wall structure associated with compression failure. J Inst Wood Sci 21:37–53
  45. Dinwoodie JM (1974) Failure of timber. Part II. The angle of shear through the cell wall during longitudinal compression stressing. Wood Sci Technol 8:5–67
  46. Donaldson LA (1995) Cell wall fracture properties in relation to lignin distribution and cell dimensions among three genetic groups of radiate pine. Wood Sci Technol 29:51–63
  47. Donaldson LA (1996) Clonal variation in the fracture properties of radiate pine wood. In Donaldson LA, Singh AP, Butterfield BG, Whitehouse L (eds) Recent advances in wood anatomy. New Zealand Forest Research Institute Ltd, Rotoruapp 283–291
  48. Donaldson LA (1997) Ultrastructure of transwall fracture surfaces in Radiata pine wood using transmission electron microscopy. Holzforschung 51:303–308
  49. Donaldson LA, Singh AP, Butterfield BG, Whitehouse L (1996) Recent advances in wood anatomy. New Zealand Forest Research Institute Ltd, Rotorua
  50. Dourado N, de Moura MFSF, Morel S, Valentin G, Morais J (2004) A finite element simulation of the SENB test with crack propagation. Proceedings of the 3rd international Conferenceon European Society for Woods Mechanics, Vila Real, Portugalpp 67–76
  51. Dourado N, Morel S, de Moura MFSF, Valentin G, Morais J (2008) Comparison of fracture properties of two wood species through cohesive crack simulations. Compos Part A: 39: 415–427
  52. Ehart RJA, Stanzl-Tschegg SE, Tschegg EK (1996) Characterization of crack propagation in particleboard. Wood Sci Technol 30:307–321
  53. Ehart RJA, Stanzl-Tschegg SE, Tschegg EK (1998) Fracture characterization of PARALAM® – PSL in comparison to solid wood and particleboard. Wood Sci Technol 32:43–55
  54. Ehart RJA, Stanzl-Tschegg SE, Tschegg EK (1999) Mode III fracture energy of wood composites in comparison to solid wood. Wood Sci Technol 33:391–405
  55. Forest Products Laboratory (1999) Wood handbook – wood as an engineering material. FPL GTR 113, USDA, Forest Service, Madison, WI
  56. Frühmann K, Tschegg EK, Dai C, Stanzl-Tschegg SE (2002) Fracture behaviour of laminated veneer lumber under Mode I and III loading. Wood Sci Technol 36:319–334
  57. Frühmann K, Burgert I, Stanzl-Tschegg SE, Tschegg EK (2003) Mode I fracture behaviour on the growth ring scale and cellular level of spruce (Picea abies L. Karst.) and beech (Fagus sylvatica L.) loaded in the TR crack propagation system. Holzforschung 57:653–660
  58. Gardiner B (1995) The interaction of wind and tree movement in forest canopies. In Coutts MP Grace J (eds) Wind and trees, Cambridge University Press, Cambridge, pp 41–59
  59. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge
  60. Gordon JE, Jeronimidis G (1980) Composites with high work of fracture. Philos Trans R Soc A 294:545–550
  61. Griffith AA (1920) The phenomenon of rupture and flow in solids. Phil Trans R Soc A 221:163–169
  62. Grosser D, Schulz H, Utschig H (1985) Mögliche anatomische Veränderubgen in erkrankten Nadelbäumen. Holz Roh-Werkst 43:315–323
  63. Guitard D, Castera P (1995) Experimental and mechanical modelling of wind induced trees sways. In Coutts MP, Grace J (eds) Wind and trees, Cambridge University Press, Cambridge, pp 195–203
  64. Guo YJ, Nairn JA (2006) Three-dimensional dynamic fracture analysis using the material point method. CMES 1(1):11–25
  65. Guo YJ, Nairn JA (2004) Calculation of J-integral and stress intensity factors using Material Point Method. Comput Model Eng Sci 6:295–308
  66. Gustafsson PJ (1985) Fracture mechanics studies of non-yielding materials like concrete. Technical Report TVBM – 1007 Lund Institute Technology, Sweden
  67. Gustafsson PJ (1988) A study of strength of notched beams. Proceedings of CIB W18 Meeting 21, Vancouver, September 1988
  68. Hillerborg A (1991) Application of the fictitious crack model to different types of materials. Int J.Fracture 51:95–102
  69. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. CemConcr Res 6:773–782
  70. Hoffmeyer P, Hanna RB (1989) Electron beam damage during testing of wood in the SEM Wood Sci Technol 23:211–214
  71. Hofstetter K, Hellmich C, Eberhardsteiner J (2007) Micromechanical modelling of solid-type and plate-type deformation patterns within softwood materials. A review and an improved approach. Holzforschung 61:343–351
  72. Homberg S, Persson K, Petersson H (1999) Nonlinear mechanical behaviour and analysis of wood and fiber materials. Comp Struct 72:459–480
  73. Irwin GR (1957) Analysis of stresses and strain near the end of a crack traversing a plate. J Appl Mech 24:361–364
  74. Jensen JL (2005a) Quasi-non-linear fracture mechanics analysis of the double cantilever beam specimen. J Wood Sci 51:566–571
  75. Jensen JL (2005b) Quasi-non-linear fracture mechanics analysis of the splitting failure of single dowel joints loaded perpendicularly to the grain J Wood Sci 51:559–565
  76. Jensen JL (2005c) Quasi-non-linear fracture mechanics analysis of splitting failure in simply supported beams loaded perpendicular to grain by dowel joints. J Wood Sci 51:577–582
  77. Jeronimidis G (1980a) Wood, one of nature’s challenging composite. In Vincent JFV, Currey JD (eds) The mechanical properties of biological materials Cambridge University Press, Cambridge, pp 169–182
  78. Jeronimidis G (1980b) The fracture behaviour of wood and the relations between toughness and morphology. Proc R Soc B-Biol Sci 208:447–460
  79. Jeronimidis G (1976) The fracture of wood in relation to its structure. Leiden botanical Series No 3: 253–265
  80. Jernkvist LO (2001) Fracture of wood under mixed mode loading. Eng. Fract. Mech. Part I Derivation of fracture criteria 68(5):549–563; Part II Experimental investigation of Picea abies. 68(5):565–576
  81. Johnson JA (1973) Crack initiation in wood plates. Wood Sci 6:151–158
  82. Jung J, Murpjy JF (1983) An investigation of the fracture of butt joints in parallel – laminated veneer. Wood Fiber Sci 15:116–134
  83. Keith CT, Côté WA Jr. (1968) Microscopic characterization of slip lines and compression failures in wood cell walls. For Prod J 18(3):67–74
  84. Keunecke D, Stanzl-Tschegg S, Niemz P (2007) Fracture characterisation of yew (Taxus baccata L) and spruce (Picea abies L.Karst) in the radial-tangential and tangential radial crack propagation system by a micro wedge splitting test. Holzforschung 61:582–588
  85. King MJ, Sutherland IJ, Le-Ngoc L (1999) Fracture toughness of wet and dry Pinus radiata. Holz Roh- Werkst 57:235–240
  86. King MJ, Vincent JFV (1998) Fracture energy during clearing of Pinus radiata. Holz Roh Werkst 56:259–265
  87. Koch G, Bauch J, Dünisch O, Seehann G, Schmitt U (1996) Sekundäre Veränderungen im Holz akut belasteten Ficten in Hochlage des Osterzgebirges. Holz Roh Werkst 54:243–249
  88. Kucera LJ, Bariska M (1982) On the fracture morphology in wood. Part I. A SEM – study of deformation in wood of spruce and aspen upon ultimate axial compression load. Wood Sci Technol 16:241–259
  89. Landis EN, Navi P (2009) Modelling crack propagation in wood and wood composites. A review. Holzforschung 63:150–156
  90. Landis EN, Vasic S, Davids WG, Parrod (2002) Coupled experiments and simulations of structural damage in wood. Exp Mech 42(4):389–394
  91. Lavisci P, Berti S, Pizzo, B, Triboulot P, Zanuttini R (2001) A delamination test for structural wood adhesives used in thick joints. Holz Roh Werkst 59:153–154
  92. Lee SH, Quales SL, Schniewind AP (1995) Wood fracture, acoustic emission, and the drying process. Part 2. Acoustic emission pattern recognition analysis. Wood Sci Technol 30:283–292
  93. Leicester RH (1971) Some aspects of stress fields at sharp notches in orthotropic materials. Division of Forest Products, Technical Paper No 57, CSIRO Australia
  94. Leicester RH (1973) Effect of size on the strength of structures. Division of Buildingg Research Tech Paper No 71 CSIRO Australia
  95. Leicester RH (1974) Fracture strength of wood. Paper at 1st Australian Conference Eng. Mater. University of New South Wales, Sydney
  96. Lespine C (2007) Courbe R et propriétés de fissures cohésive dans la rupture quasi-fragile. Proceedings of the « XXX Rencontres Universitaires de Génie Civil, Prix René Houpert »
  97. Loidl D, Tschegg EK, Stanzl-Tschegg (2008) Fracturing of wood under superimposed tension and torsion. Wood Sci Technol 42:61–74
  98. Mark RE (1967) Cell wall mechanics of wood tracheids. Yale University Press, New Haven, CT
  99. Matsumoto N, Nairn JA (2008) The fracture toughness of medium density fibreboard including the effects of fiber bridging and crack-plane interference. Eng. Fracture Mech 76:2748–2797
  100. Mattheck C (2004) The face of failure in nature and engineering. Verlag, Forschungszentrum Karlshrue
  101. Mattheck C (1996) Trees – the mechanical design. Springer, Heidelberg
  102. Mattheck C, Bethge K (1991) Failure of trees induced by delamination. Arboricultural J 15:243–253
  103. Mattheck C, Kubler H (1997) Wood – the internal optimization of trees. Springer, Heidelberg
  104. Mattheck C, Bethge K, Albrecht W (1995) Failure modes of trees and related failure criteria. In Coutts MP, Grace J (eds) Wind and trees, Cambridge University Press, Cambridge, pp 195–203
  105. Mishnaevsky L, Qing H (2008) Micromechanical modelling of mechanical behaviour and strength of wood: state of the art review. Comput Mat Sci 44:363–370
  106. Morel S, Mourot G, Schmittbubl J (2003) Influence of the specimen geometry on R – curve behaviour and roughening of fracture surfaces. Int J Fract 121(½):23–42
  107. Morel S, Bouchard E, Schmittbuhl J, Valentin G (2002) R-curve behaviour and roughness development of fracture surfaces. Int J Fract 114:307–325
  108. Morel S, Dourado N, Valentin G, Morais J (2005) Wood a quasi-brittle material R-curve behavior and peak load evaluation. Int J Fracture 131(4):385–400
  109. Morris VL, Adam JM, Hunt DG, Bonfield PW (1996) Fracture mechanics in wood and wood-based panel products at different testing speeds and relative humidity. COST Action – wood mechanics. Workshop on mechanical properties of panel products, 22 – 23 March Watford, pp 336–351
  110. Morris VL, Hunt DG, Adam JM (1999) The effect of experimental parameters on fracture energy of wood-based panels. J Inst Wood Sci 15(1): 85
  111. Moses DM, Prion HGL (2004) Stress and failure analysis of wood composites: a new model. Compos: Part B, 35:251–261
  112. Nairn JA (2009) Analytical and numerical modelling of R curves for cracks with bridging zones Int J Fract 155(2):167–181
  113. Nairn JA, Matsumoto N (2009) Fracture modelling of crack propagation in wood and wood composites including crack tip process and fiber bridging mechanics. Proceedings of the 12th International Conference on Fracture, Ottawa, July 12–17
  114. Nairn JA (2007a) Material point simulation of transverse fracture in wood with realistic morphologies. Holzforschung 61:375–381
  115. Nairn JA (2007b) A numerical study of the transverse modulus of wood as a function of grain orientation and properties. Holzforschung 61:406–413
  116. Nairn JA (2007c) Numerical modelling of deformation and fracture of wood including heterogeneity and anisotropy. Cost Action 35, Lausanne, May 21–23.
  117. Nairn JA (2006) Numerical simulation of the transverse compression and densification in wood. Wood Fiber Sci 38:576–591
  118. Nairn JA (2003) Material Point Method calculations with explicit cracks. Comput Model Eng Sci 4:649–664
  119. Niemz P, Diener M (1999) Vergleichende Untersuchungen zur Ermittlung der Bruchzähigkeit an Holzwerkstoffen. Holz Roh Werkst 57:222–224
  120. Niemz P, Diener M, Pöhler E (1997) Untersuchungen zur Ermittlung der Bruchzähigkeit an MDF – Platten. Holz Roh Werkst 55:327–330
  121. Niemz P, Bemmann A, Wagebführ R (1990) Untersuchungen zu den Eigenschaften von immissionsgeschädigtem Fichtenholz. Holztechnologie 30(2):70–71
  122. O’Brien TK (1998) Interlaminar fracture toughness: the long and winding road to standardisation. Compos B 29(1):57–62
  123. Patton – Mallory M, Cramer SM (1987) Fracture mechanics: a tool for predicting wood component strength. For Prod J 37(7/8):39–47
  124. Pearson RG (1974) Application of Fracture mechanics to the study of tensile strength of structural lumber. Holzforschung 29(1):11–19
  125. Petterson RW, Bodig J (1983) Prediction of fracture toughness of conifers. Wood Fiber Sci 15:302–316
  126. Porter AW (1964) On the mechanics of fracture in wood. For Prod J 14(8):325–331
  127. Raju IS, O’Brien TK (2008) fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation and growth criteria. In Sridharan S (ed) Delamination behaviour of composites, Woodhead Publishing, Cambridge, England
  128. Renaud M, Rueff M, Rocaboy AC (1996) Mechanical behaviour of saturated wood under compression. Part 2: Behaviour of wood at low rates of strain some effects of compression on wood structure. Wood Sci Technol 30:237–243
  129. Reiterer A, Stanzl- Tschegg SE, Tschegg EK (2000) Mode I fracture and acoustic emission of softwood and hardwood. Wood SciTechnol 34:417–430
  130. Reiterer A, Sinn G (2002) Fracture behaviour of modified spruce wood: a study using linear and non linear fracture mechanics. Holzforschung 56:191–198
  131. Reiterer A, Sinn G, Stanzl-Tschegg SE (2002) Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Mater Sci Eng A 332::29–36
  132. SAA (1975) AS 1720 – 1979 Timber engineering code. Sydney Standards Association of Australia
  133. Sandford RJ (2003) Principles of fracture mechanics. Pearson Education Inc., Upper Saddle River, NJ
  134. Sedighi – Gilani M, Navi P (2007) Micromechanical approach to wood fracture by three-dimensional mixed lattice-continnum model at fiber level. Wood Sci Technol 41:619–634
  135. Scheffler M, Niemz P, Diener M, Lostig V, Hardtke HJ (2004) Holz Roh Werkst 62(2):93–100
  136. Schmidt J, Kallske M (2007) Simulation of cracks in wood using a coupled material model for interface elements. Holzforschung 61:382–389
  137. Schniewind AP (1977) Fracture toughness and duration of load factor. II. Duration factor for cracks propagating perpendicular to grain. Wood Fiber Sci 9:216–226
  138. Schniewind AP, Centeno JC (1973) Fracture toughness and duration of load factor. I. Six principal systems of crack propagation and the duration factor for cracks propagating parallel to grain. Wood Fiber 5(2):152–158
  139. Schniewind AP, Lyon DE (1971) Tensile strength of redwood dimension lumber. I. Relation to grade and working stress. Forest Prod J 21(7):45–49
  140. Schniewind AP, Lyon DE (1973) A fracture mechanics approach to the tensile strength perpendicular to grain of dimension lumber. Wood Sci Technol 7:45–59
  141. Schniewind AP, Ohgama T, Aoki T, Yamada T (1982) Effect of specific gravity, moisture content, and temperature on fracture toughness of wood. Wood Sci 15(2):101–109
  142. Schniewind AP, Pozniak A (1971) On fracture toughness of Douglas – fir wood. Eng Fract Mech 2:223–233
  143. Sedighi-Gilani M, Navi P (2007) Micromechanical approach to wood fracture by three-dimensional mixed lattice continuum model at fiber level. Wood Sci Technol 41:619–634
  144. Seel J, Ziemmermann T (1998) The fine structure of the cell wall of hardwoods on transverse fracture surfaces. Holz Roh Werkst 56:365–366
  145. Silva MAL, de Moura MFSF, Morais JJL (2006) Numerical analysis of the ENF test for mode II wood fracture. Compos Part A:1334–1344
  146. Sippola M, Frühmann K (2002) In situ longitudinal tensile tests of pine wood in an environmental scanning electron microscope. Holzforschung 56:669–675
  147. Smith I, Chui YH (1994) Factors affecting mode I fracture energy of plantation grown red pine. Wood Sci Technol 28: 147–157
  148. Smith I, Landis E, Gong M (2003) Fracture and fatigue in wood. Wiley, New York, NY
  149. Smith I, Snow M, Asiz A, Vasic S (2007) Failure mechanism in wood based materials: a review of discrete, continuum and hybride finite-element representation. Holzforschung 61:352–359
  150. Smith I, Vasic S (2003) Fracture behaviour of softwood. Mech Mater 35:803–815
  151. Smith J, Kallske M (2007) Simulation of cracks in wood using a coupled material model for interface elements. Holzforschung 61:383–389
  152. Sridharan S (2008) Delamination behaviour of composites Woodhead Publishing, Cambridge, England.
  153. Stanzl-Tschegg SE, Navi P (2009) Fracture behaviour of wood and its composites. A review. Holzforschung 63:139–149
  154. Stanzl-Tschegg SE, Filion L, Tschegg EK, Reiter A (1999) Strength properties and density of SO2 polluted spruce wood. Holz Roh Werkst 57:121–128
  155. Stanzl-Tschegg SE, Tschegg EK, Teischinger A (1994) Fracture energy of spruce wood after different drying procedures. Wood Fiber Sci 26:467–478
  156. Stanzl-Tschegg SE, Tan DM, Tschegg EK (1995) New splitting method for wood fracture characterization. Wood Sci Technol 29: 31–50
  157. Stanzl-Tschegg SE, Ehart RJA, Tschegg EK (1997) Fracture behaviour of glued wood laminate compounds. Proceedings of the 9th international conference on fracture, Sydney, Australia
  158. Swinehart DE, Broek D (1995) Tenacity©, fracture mechanics, and unknown coater web breaks. Tappi Journal 79(2):233–237
  159. Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook. 3rd edn. ASME, New York, NY
  160. Tan DM, Stazl-Tschegg S, Tschegg EK (1995) Models of wood fracture in Mode I and Mode II. Holz als Roh- und Werkst. 53:159–164
  161. Tschegg EK (1986) Equipment and appropriate specimen shapes for tests to measure fracture values. (in German). Patent no 390328 Österreichisches Patentamt
  162. Tschegg EK, Frühmann K, Stanzl-Tschegg SE (2001) Damage and fracture mechanisms during mode I and III loading of wood. Holzforschung 55:525–533
  163. Thuvander F, Berglund LA (2000) In situ observations of fracture mechanisms for radial crack in wood. J Mater Sci 35:6277–6283
  164. Thuvander F, Berglund LA (1998) A multiple fracture test for strain to failure distribution in wood. Wood Sci Technol 32:227–235
  165. Thuvander F, Wallström L, Berglund LA, Lindberg KAH (2001) Effects of an impregnation procedure for prevention of wood cell wall damage due to drying. Wood Sci Technol 34:473–480
  166. Thuvander F, Berglund LA (2000) In situ observations of fracture mechanism for radial cracks in wood. J Mater Sci 35(24):6277–6283
  167. Triboulot P, Asano I, Ohta M (1983) An application of fracture mechanics to the wood cutting process. Mokuzai Gakk 29:111–117
  168. Triboulot P, Jodin P, Pluvinage G (1984) Validity of fracture mechanics concepts applied to wood by finite element calculation. Wood Sci Technol 18:51–58
  169. Turkulin H, Holzer L, Richter K, Ssell J (2005) Application of the ESEM in wood research. Part II. Comparison of operational modes. Wood Fiber Sci 37:565–573
  170. Valentin G, Boström L, Gustafsson PJ, Ranta-Maunus A, Gowda S (1991) Application of fracture mechanics to timber structures. RILEM State of the art report. Res. Note 1262, Technical Research Centre of Finland, Espoo, Finland
  171. Valentin G, Morlier P (1982) A criterion of crack propagation in timber. Mater Struct 15:88–95
  172. Vasic S, Ceccotti A, Smith I, Sandak J (2009) Deformation rates effects in softwoods. Crack dynamics with lattice fracture modelling. Eng Fract Mech 76(9):1231–1246
  173. Vasic S, Stanzl-Tschegg S (2008) Softwood/hardwoods fracture at different humidity levels: ESEM in-situ real time experiments. Holzforschung 62
  174. Vasic S, Stanzl-Tschegg S (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung 61:367–374.
  175. Vasic S, Stanzl-Tschegg S (2005) Fracture mechanisms and properties of green wood subjected to opening Mode I. In Tschegg S, Sinn G(eds) Proceedings of the COST Action E35, Rosenheim Workshop September 29– 30.
  176. Vasic S, Smith I (2002) Bridging crack model for fracture of spruce. Eng Fract Mech 69:745–760
  177. Vasic S, Smith I, Landis E (2002) Fracture zone characterization–micro-mechanical study. Wood Fiber Sci 34:42–56
  178. Vasic S, Smith I (2003) Contact – crack problem with friction in spruce. Holz Roh–Werkst 61(3):182–186
  179. Vasic S, Smith I (1996a) On the influence of ultrastructure and fibres bridging in Mode I fracture of wood. Proceedings of the 2nd international conference on the deevelopment of wood science /technology and Forestry ICWSF’96, Sopron, Hungary
  180. Vasic S, Smith I (1996b) The brittleness of wood in tension perpendicular to the grain: micro-mechanical aspects. Proceedings of the COST 508 Wood Mechanics Conference, Stuttgart, Germany, pp 555–569
  181. Vasic S, Smith I (1998) Bridged crack model of wood fracture: analysis and numerical modelling. Proceedings of the world timber conference Montreux, 17–20 August, Swiss Federal Institute of Technology, Lausanne, Suisse, pp 1818–1819
  182. Vasic S, Smith I (1999a) The effect of bridging stress on fracture toughness of wood. RILEM Symposium Timber Engineering, Stockholm
  183. Vasic S, Smith I (1999b) Failure analysis of tensile strength perpendicular to the grain. RILEM Symposium Timber Engineering, Stockholm
  184. Walsh PF (1971) Cleavage Fracture of Timber. Div. For. Prod. Tech. Pap. No. 65, CSIRO, Melbourne
  185. Walsh PF (1972) Linear fracture mechanics in orthotropic materials. Eng Fract Mech 4:533–541
  186. Walsh PF (1973) The interaction of butt joints. J Inst Wood Sci 6(2):22–27
  187. Wang SS (1984) Edge delamination in angle –ply laminates. AIAAA J 22(2):256–264
  188. Wang L, Lu Z, ZhaoG (2003) Wood fracture pattern during the water adsorption process. Holzforschung 57:639–643
  189. Watanabe K, Landis EN (2007) An acoustic emission –based study of energy dissipation in radially loaded spruce. In Proceedings of the 3rd international symposium on wood machining. Lausanne, Switzerland, pp 179–182
  190. Williams JG (1989) The fracture mechanics of delamination tests. J Strain Anal 24(4):207–214
  191. Wittel FK, Dill-Langer G, Kröplin BH (2005) Modelling of damage evolution in softwood perpendicular to grain by means of a discrete element approach. Comput Mater Sci 32:594–603
  192. Wu EM (1967) Application of fracture mechanics to anisotropic plate. J Appl Mech 34:967–974
  193. Yoshihara H (2001) Influence of span/depth rate on the measurement of mode II fracture toughness of wood by end – notched flexure test. J Wood Sci 47(1):8–12
  194. Yoshihara H (2003) Resistance curve for the mode II fracture toughness of wood obtained by the end – notched flexure test under the constant loading point displacement condition. J Wood Sci 49(3):210–215
  195. Yoshihara H (2004) Mode II R-curve of wood measured by 4-ENF test. Eng Fract Mech 71:2065–2077
  196. Yoshihara H (2005) Mode II initiation fracture toughness analysis for wood obtained by 3 ENF test. Compos Sci Technol 65:2198–2207
  197. Yoshihara H (2006a) Estimation of the 4–ENF test for measuring the mode III R -curve of wood. Eng Fract Mech 73(1):42–63
  198. Yoshihara H (2006b) Characterization of fracturing properties of wood and wood based materials on fracture mechanics. Mokuzai Gakk 52:185–195
  199. Zimmermann T, Sell J, Eckstein D (1994) SEM studies on tension – fracture surfaces of spruce samples. Holz als – Roh und Werkst 52:223–229
  200. Zho H, Smith I (1991) Influence of drying treatment on bending properties of plantation – grown white spruce. For Prod. J. 41(3):8–14
  201. Zink AG, Pellicane PJ, Shuler CE (1994) Ultrastructural analysis of softwood fracture surfaces. Wood Sci Technol 28:329–338
  202. Zink AG, Pellicane PJ, Anthony RW (1995) A stress transformation approach to predicting the failure mode of wood. Wood Sci Technol 30:21–30

For further details log on website :
http://link.springer.com/chapter/10.1007/978-90-481-9550-3_4

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...