Blog List

Monday, 1 August 2016

Terms for Delamination in Wood Science and Technology

Published Date
Date: 

Title 

Terms for Delamination in Wood Science and Technology

  • Author 
  • Voichita Bucur

Abstract

In Material Science, delamination is defined as a sub critical damage to the interfaces between the plies in a laminate composite that causes a reduction in the load carrying capacity of composite (Morris 1992).

References

  1. American Society for Testing and Materials (2007) Standard terminology relating to wood and wood-based products. ASTM D 9 – 05. Philadelphia, PA
  2. American Society for Testing and Materials (2007) Standard test methods for evaluating properties of wood - base fibre particle panel material. ASTM D 1037-06a. Philadelphia, PA
  3. American Society for Testing and Materials (2007) Standard terminology relating to veneer and plywood. ASTM D 1038- 83 (2005) Philadelphia, PA
  4. American Society for Testing and Materials (2007) Standard terminology relating to wood-based fibre and particle panel material ASTM D 1554 - 01 (2005) Philadelphia, PA
  5. American Society for Testing and Materials (2007) test methods for structural panels in shear through the thickness. ASTM D 2719 – 89 (2007) Philadelphia, PA
  6. American Society for Testing and Materials (2007) Standard test method for shear modulus of wood-based structural panels. ASTM D 3044 – 94 (2006) Philadelphia, PA
  7. American Society for Testing and Materials (2007) Standard test method for toughness wood-based structural panels. ASTM D 3499 – 94 (2005) Philadelphia, PA
  8. American Society for Testing and Materials (2007) Standard practice for establishing allowable properties of structural glued-laminated timber (glulam). ASTM D 3737- 07 Philadelphia, PA
  9. American Society for Testing and Materials (2007) Specification for evaluation of structural composite lumber. ASTM D 5456-06 Philadelphia, PA
  10. American Society for Testing and Materials (2007) Standard test method for surface bond strength of wood-based fibre and particle panel material ASTM D 5651 – 95a (2002) Philadelphia, PA
  11. American Society for Testing and Materials (2007) Standard guide for evaluating mechanical and physical properties of wood-plastic composites products ASTM D 7031 -04 (2004) Philadelphia, PA
  12. ASTM D1101 - 97a (2006) Standard Test Methods for Integrity of Adhesive Joints in Structural Laminated Wood Products for Exterior Use
  13. Bienfait JL (1926) Relation of the manner of failure to the structure of wood under compression parallel to the grain. J Agri Res 33:183–194
  14. Boatright SWJ, Garrett GG (1983) The effect of microstructure and stress state on the fracture behaviour of wood. J Mat Sci 18:2181–2199CrossRef
  15. Bolotin VV (1996) Delaminations in composite structures: its origin, buckling, growth and stability. Composites: Part B, 27B:129–145CrossRef
  16. Brush WD (1913) A microscopic study of the mechanical failure of wood. U.S. Depart Agri Rev Forest Serv 2:33–38
  17. Chafe SC (1977) Radial dislocations in the fiber wall of Eucalyptus regnans trees of high growth stress. Wood Sci Techn 11:69–77
  18. Clair B (2001) Etudes des proprietes mecaniques et du retrait au sechage du bois a l`echelle de la paroi cellulaire . PhD thesis Universite de Montpellier II. France
  19. Côté WA, Hanna RB (1983) Ultrastructural characteristics of wood fracture surfaces. Wood Fiber Sci 15:135–163
  20. Dadswell HE, Langlands I (1934) Brittle heart in Australian timbers: a preliminary study. J Couns Sci Ind Res Australia 7:190–196
  21. Dinwoodie JM (1966) Introduction of cell wall dislocations (slip planes) during the preparation of microscopic sections of wood. Nature 212:525–527CrossRef
  22. Dinwoodie JM (1968) Failure in timber. Part I. Microscopic changes in cell wall structure associated with compression failure. J Inst Wood Sci 4:37–53
  23. Dill-Langer G, Lutze S, Aicher S (2002) Microfracture in wood monitored by confocal laser scanning microscopy. Wood Sci Technol 36:487–499CrossRef
  24. Donaldson LA (1995) Cell wall fracture properties in relation to lignin distribution and cell dimensions among three genetic groups of radiate pine. Wood Sci Techn 29:51–63
  25. Fruhmann K, Burgert I, Stanzl-Tschegg SE, Tschegg EK Mode I (2003) Fracture behaviour on the growth ring scale and cellular level of spruce and beech loaded in the TR crack propagation system. Holzforschung, 57:653–660CrossRef
  26. Green HV (1962) Compression caused transverse discontinuities in tracheids. Pulp Paper Mag Canada 63(3):T 155 – T 168
  27. Jacard P (1910) Etude anatomique des bois comprimés. Mitt Schw. Centralanstalt. Forst. Versuchwessen 10:53–101
  28. Keith CT (1971) The anatomy of compression failure in relation to creep – inducing stresses. Wood Sci 4:71–82
  29. Keith CT (1974) Longitudinal compressive creep and failure development in white spruce compression wood. Wood Sci 7:1–12
  30. Keith CT, Côté Jr. WA (1968) Microscopic characterization of lip lines and compression failures in wood cell walls. Forest Prod J 18:67–74
  31. Kisser J, Frenzel H (1950) Mikroskopische Veränderungen der Holzstruktur bei mechanischer Überbeansprucging von Holz in der Faserrichtung. Schr Österr. Ges. Holzforschung 2:3–27
  32. Kisser J, Frenzel H (1952) Makroscopische und microsckopische Strukturänderungen bei der Biegebeanspruchung von Holz. Holz Roh- und Werkstoff 10:415–421CrossRef
  33. Kucera LJ, Bariska M (1982) On the fracture morphology in wood. Part I: A SEM - study of deformations in wood of spruce and aspen upon ultimate axial compression load. Wood SciTechnol 16:241–259CrossRef
  34. Meyer RV, Leney L (1968) Shake in coniferous woods – an anatomical study. Forest Prod J 18(2):51–56
  35. Morris C (ed) (1992) Dictionary of science and technology. Academic, Sandiego, p 604
  36. Murmanis L, Youngquist JA, Myers GC (1986) Electron microscopy study of hardboards. Wood Fiber Sci 18(3):369–375
  37. Reiter A, Sinn G (2002) Facture behaviour of modified spruce wood: a study using linear and non linear fracture mechanics. Holzforschung 56:191–198CrossRef
  38. Reiter A, Sinn G, Stanzl-Tschegg SE (2002) Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Mater Sci Eng A 332:29–36CrossRef
  39. Robinson W (1920) The microscopical features of mechanical strains in timber and the bearing of these on the structure of the cell wall in plants. Phil Trans R Soc 210 B:49–82
  40. Scurfield G, Silva SR, Wold MB (1972) Failure of wood under load applied parallel to grain. A study using scanning electron microscopy. Micron 3:160–184
  41. Sell J, Zimmermann T (1998) The fine structure of the cell wall of hardwoods on transverse fracture surfaces. HolzRoh Werkst 56:365–366CrossRef
  42. Thuvander F, Berglund LA (2000) In situ observations of fracture mechanisms for radial cracks in wood. J Mat Sci 35:6277–6283CrossRef
  43. Tschegg EK, Fruhmann K, Stanzl-Tschegg SE (2001) Damage and fracture mechanisms during mode I and mode III loading of wood. Holzforschung 55:525–533CrossRef
  44. Vasic S, Stanzl-Tschegg SE (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung 61:367–374CrossRef
  45. Wardrop AB, Dadswell HE (1947) The occurrence, structure and properties of certain cell wall deformations. J Coun Sci Ind Res Aust 221(5):14–32
  46. Wilkins AP (1986) The nomenclature of cell wall deformations. Wood Sci Technol 20:97–109

For further details log on website :
http://link.springer.com/chapter/10.1007/978-90-481-9550-3_2

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...