Thursday, 24 November 2016

Changes in the sapwood area of Japanese cedar and cypress plantations after thinning

Published Date
Volume 20, Issue 1pp 43–51

Original Article
DOI: 10.1007/s10310-014-0468-8

Cite this article as: 
Komatsu, H. & Kume, T. J For Res (2015) 20: 43. doi:10.1007/s10310-

Author
Abstract

Previous studies have revealed that the sapwood area at stand scale (A) is an important factor determining changes in transpiration by canopy trees (E). This study examined changes in A for four to six years after thinning of two Japanese cedar and two cypress plantation sites, each having three or four plots with different thinning intensities and one control plot. We focused on whether there was a difference in A (δA) between a thinned plot and a control plot during the experimental period. We observed increased radial stem growth for plots with low stem density (N) due to intensive thinning. However, δA did not decrease to zero during the experimental period for any plot. The increased radial stem growth was not large enough to cancel the effect of low N due to thinning. These results imply that a lower E for thinned plantations as compared to non-thinned plantationsis remains for several years (more than 10 years, according to our results) after thinning and that thinning could be an effective method of reducing water consumption by canopy trees.

References 
  1. Alsheimer M, Köstner B, Falge E, Tenhunen JD (1998) Temporal and spatial variation in transpiration of Norway spruce stands within a forested catchment of the Fichtelgebirge, Germany. Ann Sci For 55:103–123. doi:10.1051/forest:19980107CrossRefGoogle Scholar
  2. Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306. doi:10.1093/treephys/15.5.295PubMedCrossRefGoogle Scholar
  3. Dung BX, Miyata S, Gomi T (2011) Effect of forest thinning on overland flow generation on hillslopes covered by Japanese cypress. Ecohydrology 4:367–378. doi:10.1002/eco.135CrossRefGoogle Scholar
  4. Ford CR, Laseter SH, Swank WT, Vose JM (2011) Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecol Appl 21:2049–2067. doi:10.1890/10-2246.1PubMedCrossRefGoogle Scholar
  5. Forestry and Forest Products Research Institute (2010) Points for intensive thinning operation of dense stands. Forestry and Forest Products Research Institute, Kochi. (Available at http://www.ffpri-skk.affrc.go.jp/seika/kyodokanbatusegyo.pdf)
  6. Fujimori T (2000) Living with forests. Maruzen, TokyoGoogle Scholar
  7. Fukada H, Watanabe N, Miyata H, Yamasaki T (2009) Effect on growth and quality of remained trees by strong thinning. Bull Kochi Pref For Tech Cen 34:56–83Google Scholar
  8. Hayashi S, Sakai K (1972) Competition in relation to growth of trees in Cryptomeria forests. J Jpn For Soc 54:218–225Google Scholar
  9. Imawaka S, Sato N (2008) Study on new forest maintenance projects by “Forest Environmental Tax”. Bull Kyushu Univ For 89:75–126Google Scholar
  10. Japan Forestry Agency (2013) White paper for forest and forestry. Japan Forestry Agency, Tokyo. (Available at: http://www.rinya.maff.go.jp/j/kikaku/hakusyo/index.html)
  11. Kawahara T, Kamo K, Isagi Y, Kiyono Y (1989) Experiment of exploitation thinning in young Cryptomerria japonica and Chamaecyparis obtusa stands. Bull FFPRI 356:47–62Google Scholar
  12. Kiyono Y (1988) Analyses of factors affecting the dynamics of coverage and number of species in understories in Chamaecyparis obtusa plantations. J Jpn For Soc 70:455–460Google Scholar
  13. Komatsu H (2010) Forests and water resources. Suiri Kagaku 314:1–29Google Scholar
  14. Komatsu H, Kume T, Otsuki K (2008) The effect of converting a native broad-leaved forest to a coniferous plantation forest on annual water yield: a paired-catchment study in northern Japan. For Ecol Manage 255:880–886. doi:10.1016/j.foreco.2007.10.010CrossRefGoogle Scholar
  15. Komatsu H, Kume T, Otsuki K (2009) Effects of coniferous plantation thinning on annual interception evaporation: model verification. J Jpn For Soc 91:94–103CrossRefGoogle Scholar
  16. Komatsu H, Kume T, Otsuki K (2010) Water resource management in Japan-forest management or dam reservoirs? J Environ Manage 91:814–823. doi:10.1016/j.jenvman.2009.10.011PubMedCrossRefGoogle Scholar
  17. Komatsu H, Shinohara Y, Nogata M, Tsuruta K, Otsuki K (2013) Changes in canopy transpiration due to thinning of a Cryptomeria japonica plantation. Hydrol Res Lett 7:60–65. doi:10.3178/hrl.7.60CrossRefGoogle Scholar
  18. Kumagai T, Nagasawa H, Mabuchi T, Ohsaki S, Kubota K, Kogi K, Utsumi Y, Koga S, Otsuki K (2005) Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa. For Ecol Manage 206:191–195. doi:10.1016/j.foreco.2004.10.066CrossRefGoogle Scholar
  19. Kume T, Tsuruta K, Komatsu H, Kumagai T, Higashi N, Shinohara Y, Otsuki K (2010) Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiol 30:129–138. doi:10.1093/treephys/tpp074PubMedCrossRefGoogle Scholar
  20. Kunisaki T (2001) DBH distribution dynamics of even-aged tree populations: in the case of conifers. Jpn J For Plan 35:31–45Google Scholar
  21. Kuraji K (2003) Effects of forests on stabilizing streamflow. Nihon Chisan-Chisui Kyokai, TokyoGoogle Scholar
  22. Lagergren F, Lankreijer H, Kučera J, Cienciala E, Mölder M, Lindroth A (2008) Thinning effects on pine-spruce forest transpiration in central Sweden. For Ecol Manage 255:2312–2323. doi:10.1016/j.foreco.2007.12.047CrossRefGoogle Scholar
  23. Licata JA, Pypker TG, Weigandt M, Unsworth MH, Gyenge JE, Fernández ME, Schlichter TM, Bond BJ (2011) Decreased rainfall interception balances increased transpiration in exotic ponderosa pine plantations compared with native cypress stands in Patagonia, Argentina. Ecohydrology 4:83–93. doi:10.1002/eco.125CrossRefGoogle Scholar
  24. Macfarlane C, Bond C, White D, Grigg AH, Ogden GN, Silberstein R (2010) Transpiration and hydraulic traits of old and regrowth eucalypt forest in southwestern Australia. For Ecol Manage 260:96–105. doi:10.1016/j.foreco.2010.04.005CrossRefGoogle Scholar
  25. Miyamoto K, Okuda S, Inagaki Y, Kodani E, Noguchi M, Itou T (2009) Comparison of growth performance and leaf area index in Hinoki cypress (Chamaecyparis obtusa) plantations 5 years after thinning. Jpn J For Environ 51:21–26Google Scholar
  26. Moore G, Bond BJ, Jones JA, Meinzer FC (2010) Thermal-dissipation sap flow sensors may not yield consistent sap-flux estimates over multiple years. Trees 24:65–174. doi:10.1007/s00468-009-0390-4CrossRefGoogle Scholar
  27. Morikawa Y, Hattori S, Kiyono Y (1986) Transpiration of a 31-year-old Chamaecyparis obtusa Endl. stand before and after thinning. Tree Physiol 2:105–114. doi:10.1093/treephys/2.1-2-3.105PubMedCrossRefGoogle Scholar
  28. Morotomi T, Numao N (2012) Fiscal science of water and forest. Nippon-Keizai-Hyoronsha, TokyoGoogle Scholar
  29. Murakami S, Tsuboyama Y, Shimizu T, Fujieda M, Noguchi S (2000) Variation of evapotranspiration with stand age and climate in a small Japanese forested catchment. J Hydrol 227:114–127. doi:10.1016/S0022-1694(99)00175-4CrossRefGoogle Scholar
  30. Onda Y, Gomi T, Mizugaki S, Nonoda T, Sidle RC (2010) An overview of the field and modeling studies on the effect of forest devastation on flooding and environmental issues. Hydrol Process 24:527–534. doi:10.1002/hyp.7548CrossRefGoogle Scholar
  31. Sawano S, Komatsu H, Suzuki M (2005) Differences in annual precipitation amounts between forested area, agricultural area, and urban area in Japan. J Jpn Soc Hydrol Water Resour 18:435–440CrossRefGoogle Scholar
  32. Takeuchi I, Tadaki Y, Hchiya K, Kawahara T, Sato A (1975) Thinning experiment of 30-year-old plantation of Chamaecyparis obtusa—In reference to line-thinning—. Bull Gov For Exp Sta 272:141–155Google Scholar
  33. Tamai S, Ohkubo Y, Tsutsumi T (1983) Studies on the effects of thinning small-diameter trees (VI) changes in structure and biomass of a Cryptomeria japonica stand during twelve years after thinning. J Jpn For Soc 65:372–381Google Scholar
  34. Trisurat Y, Alkemade R, Verburg PH (2010) Projecting land-use change and its consequences for biodiversity in northern Thailand. Environ Manage 45:626–639. doi:10.1007/s00267-010-9438-xPubMedCrossRefGoogle Scholar
  35. Tsukamoto Y (1998) Conservation of forest, water, and soil. Asakura, TokyoGoogle Scholar
  36. Tsuruta K, Komatsu H, Shinohara Y, Kume T, Ichihashi R, Otsuki K (2011) Allometric equations between stem diameter and sapwood area of Japanese cedar and Japanese cypress for stand transpiration estimates using sap flow measurement. J Jpn Soc Hydrol Water Resour 24:261–270CrossRefGoogle Scholar
  37. Vertessy RA, Watson FGR, O’Sullivan SK (2001) Factors determining relations between stand age and catchment water balance in mountain ash forests. For Ecol Manage 143:13–26. doi:10.1016/S0378-1127(00)00501-6CrossRefGoogle Scholar
  38. Yashiro Y, Lee NYM, Ohtsuka T, Shizu Y, Saitoh TM, Koizumi H (2010) Biometric-based estimation of net ecosystem production in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. J Plant Res 123:463–472. doi:10.1007/s10265-010-0323-8PubMedCrossRefGoogle Scholar

For further details log on website :
http://link.springer.com/article/10.1007/s10310-014-0471-0

No comments:

Post a Comment