Monday, 14 November 2016

Genetic transformation of Populustoward improving plant performance and drought tolerance

Published Date
Volume 66 of the series Forestry Sciences pp 135-160

  • Tzfira Tzvi
  • Wangxia Wang
  • Altman Arie


Populus species are commercially important forest trees worldwide. Their practical utilization ranges from the production of quality timbers, veneer and particle board, through their use for paper and pulp production and even for non-quality application of fire wood (Olsen, 1988). As such, Populus species and hybrids are one of the major economically planted forest tree species in Europe and North America. They are also found extensively in China and India, where they have a great economical potential as a source for firewood and other applications, as well as in other countries (Zsuffa, 1985). Several Populus species were also found highly suitable for reforestation in mixed forests due to their ecological adaptation, their ability to develop a branched and efficient root system, their fast growth rate and their adaptation to tangled forest structure. Several true poplar species show high adaptability and grow well on marginal soils, and their natural shoot regeneration ability impart them an advantage in soil-conservation plantations.


  1. Ahuja, M.R., 1986. Aspen. In: D.A. Evans, W.R. Sharp & P.V. Ammirato (Eds), Handbook of Plant Cell Culture. Techniques and Applications. Vol 4, pp. 627–651. Macmillan Publishing Company, New York.
  2. Ahuja, M.R., 1993. Regeneration and germplasm preservation in aspen-Populus. In: M.R. Ahuja (Ed.), Micropropagation of Woody Plants, pp. 187–194. Kluwer Academic Publishers, The Netherlands.
  3. Ahuja, M.R. & M. Fladung, 1997. Regulation of transgene expression in Populus. Joint Meeting of the IUFRO Working Parties 2.04–07 and 2.04–06 Somatic Cell Genetics and Molecular Genetic of Trees (August 1997 ), Quebec, CA, Abstract no. 20.
  4. Akiyoshi, K., E. Matsunaga, K. Yoshida, A. Shinmyo & H. Ebinuma, 1996. Growth stimulation of hybrid aspen by introduction of peroxidase gene. 5th International Congress of Plant Molecular Biology (September 1997 ), Singapore, Abstract no. 1331
  5. Alamillo, J.M., R. Roncarati, P. Heino, R. Velasco, D. Nelson, R. Elster, G. Bemacchia, A. Furini, G. Schwall, F. Salamini & D. Bartels, 1994. Molecular analysis of desiccation tolerance in barley embryos and in the resurrection plant Craterostigma plantagineum. Agronomie 2: 161–167.CrossRef
  6. Alscher, R.G., 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77: 457–464.CrossRef
  7. Altamura, M.M., F. Capitani, L. Gazla, I Capone & P. Costantino, 1994. The plant oncogene rolB stimulates the formation of flower and root meristemoides in tobacco thin layers. New Phytol 126: 283–293.CrossRef
  8. Armitage, P., R. Walden & J. Draper, 1988. Vectors for the transformation of plant cells using Agrobacterium. In: J. Draper, R. Scott, P. Armitage & R. Walden R (Eds.), Plant Genetic Transformation and Gene Expression, A Laboratory Manual, pp. 1–68. Blackwell Scientific Publications Ltd., London.
  9. Arora, R. & M.E. Wisniewski, 1994. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant Physiol 105: 95–101.PubMedCrossRef
  10. Arora, R., L.J. Rowland & G.R. Panta, 1997. Chill-responsive dehydrins in blueberry: Are they associated with cold hardiness or dormancy transitions? Physiol Plant 101: 8–16.CrossRef
  11. Baucher, M., B. Chabbert, G. Pilate, J. van Doorsselaere, M.-T. Tollier, M. Petit-Conil, D. Cornu, B. Monties, M. van Montagu, D. Inze, L. Jouanin & W. Boerjan, 1996. Red xylem and higher lignin extractability by down regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112: 1479–1490.PubMed
  12. Blackman, S.A., S.H. Wettlaufer, R.L. Obendrof & A.C. Leopold, 1991. Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol 96: 868–874.PubMedCrossRef
  13. Bohnert, H.J. & E. Sheveleva, 1998. Plant stress adaptations–making metabolism move. Current Opinion Plant Biol 1: 267–274.CrossRef
  14. Boudet, A.M. & J. Grima-Pattena, 1996. Lignin genetic engineering. Mol Breed 2: 25–39.CrossRef
  15. Bradford, K.J. & P.M. Chandler, 1992. Expression of “dehydrin-like” proteins in embryos and seedlings of Zizania palustres and Oryza sativa during dehydration. Plant Physiol 99: 488–494.PubMedCrossRef
  16. Bradshaw, H.D., J.B. Hollick, T.J. Parsons, H.R.G. Clarke & M.P. Gordon, 1989. Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol Biol 14: 51–59.CrossRef
  17. Brasileiro, A.C.M., J.C. Leple, J. Muzzin, D. Ounnoughi, M.-F. Michel & L. Jouanin, 1991. An alternative approach for gene transfer in trees using wild-type Agrobacterium strains. Plant Mol Biol 17: 441–452.PubMedCrossRef
  18. Brasileiro, A.C.M., C. Tourneur, J.C. Leple, V. Combes & L. Jouanin, 1992. Expression of the mutant Arabidopsis thaliana acetolactate confers chlorsulfuron resistance to poplar. Trans Res 1: 133–141.CrossRef
  19. Clarke, H.R.G, J.M. Davis, S.M. Wilbert, H.D. Bradshaw & M.P. Gordon, 1994. Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. Plant Mol Biol 25: 799–815.PubMedCrossRef
  20. Close, T.J. 1996. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97: 795–803.CrossRef
  21. Close, T.J. 1997. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100: 291–296.CrossRef
  22. Close, T.J., R.D. Fenton, A. Yang, R. Asghar, D.A. DeMason, D.E. Crone, N.C. Meyer & F. Moonan, 1993. Deyhydrin: The protein. In: T.J. Close & E.A. Bray (Eds.), Plant Response to Cellular Dehydration During Environmental Stress, pp. 104–118. American Society of Plant Physiologists, MA.
  23. Cornai, L., D. Facciotti, W.R. Hiatt, G. Thompson, R. Rose & D. Stalker, 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744.CrossRef
  24. Confalonieri, M., A. Balestrazzi & S. Bisoffi, 1994. Genetic transformation of Populus nigra by Agrobacterium tumefaciens. Plant Cell Rep 13: 256–261.CrossRef
  25. Confalonieri, M., A. Balestrazzi & R. Cella, 1997. Genetic transformation of Populus deltoides and P. euramericanaclones using Agrobacterium tumefaciens. Plant Cell Tissue Organ Culture 48: 53–61CrossRef
  26. Davis, J.M., H.R.G. Clarke, H.D. Bradshaw & M.P. Gordon, 1991. Populus chitinase genes: structure, organisation, and similarity of translated sequences to herbaceous plant chitinases. Plant Mol Biol 17: 631–639.
  27. Davis, J.M., E.E. Egelkrout, G.D. Coleman, T.H.H. Chen, B.E. Haissig, D.E. Riemenschneider & M.P. Gordon, 1993. A family of wound-induced genes in Populus shares common features with genes encoding vegetative storage proteins. Plant Mol Biol 23: 135–143.PubMedCrossRef
  28. Dean, J.F.D., P.R. LaFayette, K.-E.L. Eriksson & S.A. Merkle, 1997. Forest tree biotechnology. In: T. Scheper (Ed.), Biotechnology in the Pulp and Paper Industry–Advances in Biochemical Engineering Biotechnology, Vol. 57, pp. 1–44. Springer-Verlag, Berlin, Heidelberg.CrossRef
  29. De Block, M., 1990. Factors influencing the tissue culture and the Agrobacterium tumefaciensmediated transformation of hybrid aspen and poplar clones. Plant Physiol 93: 1110–1116.PubMedCrossRef
  30. De Cleene, M. & J. De Ley, 1976. The host range of crown gall. Bot Rev 42: 389–466.CrossRef
  31. Delbarre, A., P. Muller, V. Imhoff, H. Barbier-Brygoo, C. Maurel, N. Leblanc, C. Perrot-Rechenmann & J. Guern, 1994. The rolb gene of Agrobacterium rhizogenes does not increase the auxin sensitivity to tobacco protoplasts by modifying the intracellular auxin concentration. Plant Physiol 105: 563–569.PubMed
  32. Devantier, Y.A., B. Moffat, C. Jones & P.J. Charest, 1993. Microprojectile-mediated DNA delivery to the Salicaceaefamily. Can J Bot 71: 1458–1466.CrossRef
  33. Dickmann, D.I. & K.W. Stuart, 1983. The Culture of Poplars in Eastern North America. Michigan State University, East Lansing.
  34. Donahue, R.A., T.D. Davis, C.H. Michler, D.E. Riemenschneider, D.R. Carter, P.E. Marquardt, N. Sankhla, D. Sankhla, B.E. Haissig & J.G. Isebrands, 1994. Growth, photosynthesis, and herbicide tolerance of genetically modified hybrid poplar. Can J For Res 24: 2377–2383.CrossRef
  35. Dure, L., 1993a. The LEA proteins of higher plants. In: D.P.S. Verma (Ed.), Control of Plant Gene Expression, pp. 325–335. CRC Press, Boca Raton FL.
  36. Dure, L., 1993b. Structural motifs in Lea proteins. In: T.J. Close & E.A. Bray (Eds.), Plant Response to Cellular Dehydration During Environmental Stress, pp. 91–103. American Society of Plant Physiologists, MA.
  37. Dure, L., S.C. Greenway & G.A. Galan, 1981. Developmental biochemistry of cottonseed embryogenesis and germination: XIV. Changing mRNA populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20: 4162–4168.PubMedCrossRef
  38. Estruch, J.J., D. Chriqui, K. Grossmann, J. Schell & A. Spena, 1991a. The plant oncogene ro1C is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10: 2889–2895.
  39. Estruch, J.J., J. Schell & A. Spena, 1991b. The protein encoded by the rolB plant oncogene hydrolyse indole glucosides. EMBO J 10: 3125–3128.PubMed
  40. Faiss, M., M. Strand, P. Redig, K. Dolezal, J. Hanus, H. Van Onckelen & ‘f. Schmulling, 1996, Chemically induced expression of the ro/C-encoded ß-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10: 33–46.CrossRef
  41. Fillatti, J.J., J. Sellmer, B. McCown, B. Haissing, & L. Comai, 1987. Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206: 192–199.
  42. Finch-Savage, W.E., S.K. Pramanik & J.D. Bewely, 1994. The expression of dehydrin proteins in desiccation-sensitive (recalcitrant) seeds of temperature trees. Planta 193: 478–485.CrossRef
  43. Fladung, M. & M.R. Ahuja, 1997. Excision of the maize transposable element AC in periclinal chimeric leaves of 35SAC ro1C transgenic aspen. Plant Mol Biol 33: 1097–1103.PubMedCrossRef
  44. Fladung, M., S. Kumar & M.R. Ahuja, 1997. Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Trans Res 6: 111–121.CrossRef
  45. Foyer, C.H., L. Jouanin, N Souriau, S. Perret, M. Lelandais, K.-J. Kunert, G. Noctor, C. Pruvost, M. Strohm, H. Mehlhom, A. Polie & H. Rennenberg, 1994. The molecular, biochemical and physiological function of glutathione and its action in poplar. In: H. Sanderman & M. BonnetMasimbert (Eds.), Eurosilva–Contribution to Tree Physiology, pp. 141–170. INRA Editions, Paris.
  46. Foyer, C.H., N. Souriau, S. Perret, M. Lelandais, K.-J. Kunert, C. Pruvost & L. Jouanin, 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increase in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109: 1047 1057.
  47. Galau, G.A., N. Bijassoradat & D.W. Hughes, 1987. Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs: coordinate regulation during embryogenesis and the role of abscisic acid. Dev Biol 123: 198–212.PubMedCrossRef
  48. Gaudin, V. T. Vrain & L. Jouanin, 1994. Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32: 11–29.
  49. Hajela, R.K., D.P. Horvath, S.J. Gilmour & M.F. Thomashow, 1990. Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93: 1246–1252.PubMedCrossRef
  50. Hall, R.B., 1985. Breeding strategy for AlnusPopulus, and Salix. In: C.P. Mitchel, P.O. Nilsson & L. Zsuffa (Eds.), Proc Joint TEA Forestry Program and FAO/Cooperative Network on Rural Forest Energy, Conf and Workshops on Research in Forestry for Energy, pp. 75–95. Rungstedgaard, Denmark. Oct. 1985, Swedish Univ of Ag Sci N 49/1986.
  51. Hall, A.E. 1993. Is dehydration tolerance relevant to genotypic differences in leaf senescence and crop adaptation to dry environments? In: T.J. Close & E.A. Bray (Eds.), Plant Response to Cellular Dehydration During Environmental Stress, pp. 1–10. American Society of Plant Physiologists, MA.
  52. Hampp, R., M. Ecke, C. Schaeffer, T. Wallenda, A. Wingler, I. Kottke & B. Sundberg, 1996. Axenic mycorrhization of wild type and transgenic hybrid aspen expressing T-DNA indoleacetic acid-biosynthetic genes. Trees 11: 59–64.CrossRef
  53. Han, K.H., M.P. Gordon & S.H. Strauss, 1997. High frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Can J For Res 27: 464–470.CrossRef
  54. Hawkins, S., J. Samaj, V. Lauvergeat, A. Boudet & J. Grima-Pattenati, 1997. Cinnamyl alcohol dehydrogenase: identification of new sites of promoter activity in transgenic poplar. Plant Physiol 113: 321–325.PubMed
  55. Hansen, E.A. & D.A. Netzer, 1992. Weed Control Using Herbicides in Short-Rotation Intensively Cultured Poplar Plantations. USDA Forest Service Research Paper NC-260.
  56. Hayashi, H., L. Mustardy, P. Deshnium, M. Ida & N. Murata, 1997. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase & accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12: 133–142.PubMedCrossRef
  57. Hohenstein, W.G. & L.L. Wright, 1994. Biomass energy production in the United States: An overview. Biomass and Bioenergy 6: 161–173.CrossRef
  58. Rollick, J.B. & M.P. Gordon, 1995. Transgenic analysis of a hybrid poplar wound-inducible promoter reveals developmental patterns of expression similar to that of storage protein genes Plant Physiol 109: 73–85.
  59. Hooykaas, P.J.J. & R.A. Schilperoort, 1992. Agrobacterium and plant genetic engineering. Plant Mol Biol 19: 15–38.
  60. Iturriaga, G., K. Schneider, F. Salamini & D. Bartels, 1992. Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco. Plant Mol Biol 20: 555–558.PubMedCrossRef
  61. Kapila, J., R. De Rycke, M. Van Montagu & G. Angenon, 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122: 101–108.CrossRef
  62. Kermode, A.R., 1990. Regulation mechanisms involved in the transition from seed development to germination. Crit Rev Plant Sci 9: 155–195.CrossRef
  63. Klein, M. T. & S. Fitzpatrick-McElligott, 1993. Particle bombardment: a universal approach for gene transfer to cells and tissues. Curr Opin Biotechol 4: 583–590.CrossRef
  64. Kramer, P.J. & T.T. Kozlowski, 1979. Physiology of Woody Plants. Academic Press, NY. Kramer, P.J., 1983. Water Relations of Plants. Academic Press, NY.
  65. Kurioka, Y., Y. Suzuki, H Kamada & H. Harada, 1992. Promotion of flowering and morphologival alterations in Atropa bellasonna transformed with CaMV 35S-rolC chimeric gene of the Ri plasmid. Plant Cell Rep 12: 1–6.CrossRef
  66. Labhilili, M., P. Joudrier & M.-F. Gautier, 1995. Characterization of cDNA encoding triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance. Plant Sci 112: 219–230.CrossRef
  67. Leple, J.C., A.C.M. Brasilerio, M.-F. Michel, F. Delmotte & L Jouanin, 1992. Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11: 137–141.CrossRef
  68. Leple, J.C., M. Bonade-Bottino, S. Augustin, G. Pilate, V. Dumanois Le Tan, A. Delplanque, D. Cornu & L. Jouanin, 1995. Toxicity to Chrysomela tremulae (Coleopetra: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Molecular Breeding 1: 319–328.CrossRef
  69. Levitt, J., 1980. Responses of Plants to Environmental Stresses. Vol. II. Academic Press, New-York.
  70. Li, Y., G. Hagen & T.J. Guilfoyle, 1992. Altered morphology in transgenic tobacco plant overproduce cytokinins in specific tissues and organs. Dev Biol 153: 386–395.PubMedCrossRef
  71. McCown, B.H., D.E. McCabe, D.R. Russell, D.J. Robinson, K.A. Barton & K.F. Raffa, 1991. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9: 590–594.CrossRef
  72. Michel, M.F., F. Delmotte & C. Depierreux, 1988. Transformation of hybrids Populus tremula x P. alba by Agrobacterium tumefaciens. In: M.R. Ahuja (Ed.), Somatic Cell Genetics of Woody Plants, pp. 81–95. Kluwer Academic Publishers, Boston MA.CrossRef
  73. Michler, C.H., 1994. Somatic embryogenesis in Populus spp. In: S. Jain, P. Gupta & R. Newton (Eds.), Somatic Embryogenesis in Woody Plants, pp. 89–97. Kluwer Academic Publishers, Dordrecht.
  74. Mundy, J. & N.H. Chua, 1988. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7: 2279–2286.PubMed
  75. Muthalif, M.M. & L.J. Rowland, 1994. Identification of chilling-responsive proteins from floral buds of blueberry. Plant Sci 101: 41–49.CrossRef
  76. Nesme, X., C. Ponsonnet, C. Picard & P. Normand, 1992. Chromosomal and pTi genotypes of Agrobacteriumstrains isolated from Populus tumors in two nurseries. FEMS Microbiol Ecol 101: 189–196.
  77. Nilsson, O. & O. Olsson, 1997. Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100: 463–473.CrossRef
  78. Nilsson, O., T. Alden, F. Sitbon, C.H.A. Little, V. Chalupa, G. Sandberg & O. Olsson, 1992. Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Trans Res 1: 209–220.CrossRef
  79. Nilsson, O., C.H.A. Little, G. Sandberg & O. Olsson, 1996a. Expression of two heterologous promoters, Agrobacterium rhizogenes ro1C and cauliflower mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle growth and dormancy. Plant Mol. Biol. 31: 887–895.
  80. Nilsson, O., T. Moritz, B. Sundberg, G. Sandberg & O. Olsson, 1996b. Expression of the Agrobacterium rhizogenes ro1C gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol 112: 493–502.PubMed
  81. Nilsson, O., H. Tuominen, B. Sundberg & O. Olsson, 1997. The Agrobacterium rhizogenes rolB and ro1C promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen. Physiol Plant 100: 456–462CrossRef
  82. Noctor, G., M. Strohm, L. Jouanin, K.-J. Kunert, C.H. Foyer & H. Rennenberg, 1996. Synthesis of glutathione in leaves of transgenic poplar overexpressing y-glutamyl cysteine synthetase. Plant Physiol 112: 1071–1078.PubMed
  83. Olsen, W.L., 1988. Progress and prospect. In: A. Valentine (Ed.), Forest and Crop Biotechnology, pp. 315–334. Springer-Verlag, New-York.
  84. Ostry, M.E. & Michler, C.H., 1993. Use of biotechnology for tree improvement in Populus model systems. In: M.R. Ahuja (Ed.), Micropropagation of Woody Plants, pp. 471–483. Kluwer Academic Publisher, Dordrecht.
  85. Parsons, J.F., V.P. Sinkar, R.F. Stettler, E.W. Nester & M.P. Gordon, 1986. Transformation of poplar by Agrobacterium tumefaciens. Bio/Technology 4: 533–536.CrossRef
  86. Pelah, D., O. Shoseyov & A. Altman, 1995. Characterization of BspA, a major boiling stable, waterstress-responsive protein in aspen (Populus tremula). Tree Physiol 15: 673–678.PubMedCrossRef
  87. Pelah, D., W.-X. Wang, O. Shoseyov, A. Altman & D. Bartels, 1997. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant 99: 153–159.CrossRef
  88. Piquemal, J., C. Lapierre, K. Myton, A. O’Connell, W. Schuch, J. Grima-Pettenati & A.M. Boudet, 1998. Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13: 71–83.CrossRef
  89. Potrykus, I., R. Bilang, J. Futterer, C. Sautter, M. Schrott & G. Spangenberg, 1998. Genetic engineering of crop plants. In: A. Altman (Ed.), Agricultural Biotechnology. pp. 119–159. Marcel Dekker, NY.
  90. Pythoud, F., V.P. Sinkar, E.W. Nester & M.P. Gordon, 1987. Increased virulence of Agrobacterium rhizogenesconferred by the vir region of pTiBo542: application to genetic engineering of poplar. Bio/Tech 5: 1323–1327.CrossRef
  91. Rhodes, D., S. Handa & R. Bressan, 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol 82: 890–903.PubMedCrossRef
  92. Riemenschneider, D., B.E. Haissig, J. Sellmer & J. Fillatti, 1988. Expression of an herbicide tolerance gene in young plants of a transgenic hybrid poplar clone. In: M.R. Ahuja (Ed.), Somatic Cell Genetics of Woody Plants. pp. 73–80. Kluwer Academic Publishers, Boston.CrossRef
  93. Rohde, A., M. Van Montagu, D. Inze & W. Boerjan, 1997. Factors regulating the expression of cell cycle genes in individual buds of Populus. Planta 201: 43–52.CrossRef
  94. Russell, J.A. & B.H. McCown, 1988. Recovery of plants from leaf protoplasts of hybrid-poplar and aspen clones. Plant Cell Rep 7: 59–62.CrossRef
  95. Schmulling, T., J. Schell & A. Spena, 1988. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629.PubMed
  96. Schmulling, T., J. Schell & A. Spena, 1989. Promoters of the rolAB and C genes of Agrobacterium rhizogenes are differently regulated in transgenic plants. Plant Cell 1: 665–670.PubMed
  97. Schneider, K., B. Well, E. Schmelzer, F. Salamini & D. Bartels, 1993. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst Planta 189: 120–131.
  98. Schwartzenberg, K.V., P. Doumas, L. Jouanin & G. Pilate, 1994 Enhancement of endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14: 27–35.CrossRef
  99. Sellmer, J.C. & B.H. McCown, 1989. Transformation in Populus spp. In: Y.P.S. Bajaj (Ed.), Plant Protoplasts and Genetic Engineering II, pp. 155–172. Springer-Verlag, Berlin/Heidelberg.CrossRef
  100. Shani, Z., E. Shpigel, L. Roiz, R. Goren, B. Vinocur, T. Tzfira, A. Altman & O. Shoseyov, 1998a. Cellulose binding domain increases cellulose synthase activity in Acetobacter xylinum,and biomass of transgenic plants. In: A. Altman, S. Izhar & M. Ziv (Eds.), Plant Biotechnology and In Vitro Biology in the 21st Century. Kluwer Academic Publishers (in press).
  101. Shani, Z, M. Dekel, G. Tsabary, C.S. Jensen, T. Tzfira, R. Goren, A. Altman & O. Shoseyov, 1998b. Expression of Arabidopsis thaliana endo–1–4–3–glucanase (cell) in transgenic poplar plants. In: A. Altman, S. Izhar & M. Ziv (Eds.), Plant Biotechnology and In Vitro Biology in the 21st Century. Kluwer Academic Publishers (in press).
  102. Shen, W.H., E. Davioud, C. David, H. Barbier-Brygoo, J. Tempe & J. Guern, 1990. High sensitivity to auxin is a common feature of hairy root. Plant Physiol. 94: 544–560.CrossRef
  103. Siemens, J & O. Schieder, 1996. Transgenic plants: genetic transformation–recent developments and the state of art. Plant Tissue Culture and Biotechnology 2: 66–75.
  104. Sitbon, F., S. Hennion, B. Sundberg, C.H. Anthony Little, O. Olsson & G. Sandberg, 1992. Transgenic tobacco plants coexpressing the Agrobacterium tumefaciens iaaM and iaah genes display altered growth and indoleacetic acid metabolism. Plant Physiol 99: 1062–1069.PubMedCrossRef
  105. Shiver, K. & J. Mundy, 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 26: 503–512.
  106. Smith, I.K., A. Polie & H. Rennenberg, 1990. Glutathione. In: R.G. Alscher & J.R. Cumming (Eds.), Stress Responses in Plants, Adaptation and Acclimation Mechanisms, pp 201–205. Wiley-Liss Inc. New York.
  107. Son, S.H., H.K. Moon & R.B. Hall, 1993. Somaclonal variation in plants regenerated from callus culture of hybrid aspen (Populus alba x P. grandidentata Michx.). Plant Sci 90: 89–94.CrossRef
  108. Strauss, S.H, W.H. Rottmann, A.M. Brunner & L.A. Sheppard, 1995. Genetic engineering of reproductive sterility in forest trees. Mol Breeding 1: 5–26.CrossRef
  109. Tsai, C.-J., G.K. Podila, & V.L. Chiang, 1994. Agrobacterium-mediated transformation of quaking aspen (Populus tremuloides) and regeneration of transgenic plants. Plant Cell Rep 14: 94–97.
  110. Tuominen, H., F. Sitbon, C. Jacobsson, G. Sandberg, O. Olsson & B. Sundberg, 1995. Altered growth and wood charecteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol 109: 1179–1189.PubMed
  111. Tzfira, T., H. Ben-Meir, A. Vainstein & A. Altman, 1996. Highly efficient transformation and regeneration of aspen plants through shoot-bud formation in root culture. Plant Cell Rep 15: 566–571.CrossRef
  112. Tzfira, T., C.S. Jensen, A. Vainstein & A. Altman, 1997. Agrobacterium tumefaciens-mediated transformation of Populus tremula L. through direct shoot regeneration from stem segments. Physiol Plant 99: 554–561.
  113. Tzfira, T., A. Zuker & A. Altman, 1998. Forest tree biotechnology: genetic transformation and its application to future forests. Trends in Biotechnology 16: 439–446.CrossRef
  114. Van Blockland, R., P. de Lange, J.M.M. Mol & J.M. Kooter, 1993. Modulation of gene expression in plants by antisense genes. In: B. Lebleu (Ed.), Antisense Research and Applications. pp. 125–148. CRC Press, Boca Raton.
  115. Van Doorsselaere, J., M. Baucher, E. Chognot, B. Chabbert, M.-T. Tollier, M. Petit-Conil, J.C. Leple, G. Pilate, D. Cornu, B. Monties, M. van Montagu, D. Inze, W. Boerjan & L. Jouanin, 1995. A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid 0methyltransferase activity. Plant J 8: 855–864.CrossRef
  116. Van der Salm, T.P.M., C.J.G. van der Toorn, R. Bouwer, C.H. Hanisch ten Cate & H.J.M. Dons, 1997. Production of rol gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Molecular Breeding 3: 39–47.CrossRef
  117. Wang, G.J., S. Castiglione, Y. Chen, L. Li, Y.F. Han, Y.C. Tian, D.W. Gabriel, Y.N. Han, K.Q. Mang & F. Sala, 1996. Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Trans Res 5: 289–301.CrossRef
  118. Weigel, D. & O. Nilsson, 1995. A development switch sufficient for flower intiation in diverse plants. Nature 377: 495–500.PubMedCrossRef
  119. Winton, L.L., 1968. Plantlet formation in aspen tissue culture. Science 160: 1234–1235.PubMedCrossRef
  120. Wisniewski, M., T.J. Close, T. Artlip & R. Arora, 1996. Seasonal patterns of dehydrins and 70-kDa heat-shock proteins in back tissues of eight species of woody plants. Physiol Plant 96: 496–505.CrossRef
  121. Xu, D., X. Duan, B. Wang, B. Hong, T.-H.D. Ho & R. Wu, 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249–257.PubMed
  122. Zeldin, E.L. & B. McCown, 1986. The dynamics of poplar root culture and the differentiation of shoots from cultured roots. HortScience 21: 815.
  123. Zhan, X., S. Kawai, Y. Katayama & N. Morohoshi, 1997. A new approach based on leaf disc method for Agrobacterium mediated transformation and regeneration of aspen. Plant Sci 123: 105–112.CrossRef
  124. Zsuffa, L., 1985. Concepts and experiences in clonal plantations of hardwoods. Proc. 19th Meeting of Clonal Forestry: The Canadian Tree Improvement Association, Can For Serv, pp. 12–25.
  125. Zuker, A., T. Tzfira & A. Vainstein, 1998. Recent advances in genetic engineering of cut flowers. Biotechnology Advances 16: 33–79.PubMedCrossRef
  126. Zupan, J. R. & P. Zambryski, 1995. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107: 1041–1047.PubMedCrossRef

For further details log on website :

No comments:

Post a Comment