Monday, 14 November 2016

Transgenic in Larix

Published Date
Volume 66 of the series Forestry Sciences pp 119-134

Author 
  • Lelu Marie-Anne
  • Gilles Pilate

  • Abstract

    The genus Larix belongs to the pine family, and has 10 species and a large number of subspecies and hybrids. It is widely distributed across North America, Asia and Europe. Three species are endemic to North America and seven occur in Europe and Asia. In North America, L. occidentalis (western larch) and L. lyalli (Alpine larch) grow in subalpine regions whereas L. laricina L. (tamarack) is mainly restricted to boreal zones. In Europe, Larix decidua(European larch) constitutes the only species and is localised at the subalpine level. In North Asia, Larix russicaoften referred to as L. sibirica (Siberian larch) and L. gmelinii (Asian larch) dominate the Siberian forest landscape. Southern Asia accounts for a wide variety of Larix species ranging from the mountain conditions of L. mastersiana (Masters larch, southwestern China) to the high elevation forests of L. griffithiana (Sikkim larch) in the Himalayan Mountains (Nepal, Tibet) and L. potaninii (Chinese larch) in southwestern China to the island environment of L. kaempferi referred to as L. leptolepis (Japanese larch) in Japan (Schmidt 1992).

    References

    1. Arcade, A., Faivre-Rampant, P., Le Guerroué, B., Pâques, L.E. and D. Prat, 1996. Heterozygoty and hybrid performance in larch. Theor. Appl. Genet. 93: 1274–1281.
    2. Baucher, M., Chabbert, B., Pilate, G., van Doorsselaere, J., Tollier, M.T., Petit-Conil, M., Cornu, D., Monties, B., van Montagu, M., Inze, D., Jouanin, L. and W. Boerjan, 1996. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol. 112: 1479 1490.
    3. Becker, D. 1990. Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res. 18: 203.PubMedCrossRef
    4. Bonga, J.M., Klimaszewska, K., Lelu, M.A. and P. von Aderkas, 1995. Somatic embryogenesis in Larix. In: Somatic embryogenesis in Woody plants. Eds: Jain (M), Gupta (PK) and Newton (RJ); Vol 3 Kluwer Academic Publishers, Dordrecht, The Nederlands, 315–339.CrossRef
    5. Charest, P.J. and M.F. Michel, 1991. Basics of plant genetic engineering and its potential applications to tree species. Petawawa National Forestry Institute - Information Report PI-X-104, Forestry Canada, 47 p.
    6. Charest, P.J., Devantier, Y., Ward, C., Jones, C., Schaffer, U. and K.K. Klimaszewska, 1991. Transient expression of foreign chimeric genes in the gymnosperm hybrid larch following electroporation. Can. J. Bot. 69: 1731–1736.
    7. Charest, P.J., Calero, N., Lachance, D., Datla; R.S.S., Duchesne, L.C. and E.W.T. Tsang, 1993. Microprojectile-DNA delivery in conifer species–factors affecting assessment of transient gene expression using the ß-glucuronidase reporter gene. Plant Cell Rep. 12: 189–193.
    8. Charest, P.J., Devantier, Y. and D. Lachance, 1996. Stable genetic transformation of Picea mariana (Black spruce) via microprojectile bombardment. In Vitro Cell. Dev. Biol. Plant 32: 91–99.
    9. Diner, A.M. and D.F. Karnosky, 1987. Differential responses of two conifers to in vitro inoculation with Agrobacterium rhizogenes. Eur. J. For. Pathol. 17: 221–216.
    10. Duchesne, L.C. and P.J. Charest, 1992. Effect of promoter sequence on transient expression of the ßglucuronidase gene in embryogenic calli of Larix x eurolepis and Picea mariana following microprojection. Can. J. Bot. 70: 175–180.
    11. Duchesne, L.C., Lelu, M.A., von Aderkas, P. and P.J. Charest, 1993. Microprojectile-mediated DNA delivery in haploid and diploid embryogenic cells of Larix spp. Can. J. For. Res. 23: 312–316.
    12. Dumas, B., Vandoorsselaere, J., Gielen, J., Legrand, M., Fritig, B., VanMontagu, M. and D. Inze, 1992. Nucleotide Sequence of a Complementary DNA Encoding 0-Methyltransferase from Poplar. Plant Physiol. 98: 796–797.PubMedCrossRef
    13. Ellis, D.D., 1995. Transformation of gymnosperms in: Jain SM, Gupta PK, Newton RJ (eds), Somatic embryogenesis in woody plants, Vol 1. Kluwer, Dordrecht, pp. 227–251.
    14. Ellis, D.D., McCabe, D.E., Mcinnis, S., Ramachandran, R., Russell, D.R., Wallace, K.M., Martinell, B.J., Roberts, D.R., Raffa,K.F. and B.H. McCown, 1993. Stable Transformation of Picea glauca by particle acceleration. Bio/ Technology 11: 84–89.
    15. Gower, S.T. and J.H. Richards, 1990. Larches: deciduous conifers in an evergreen world. BioScience 40: 818–826.CrossRef
    16. Gupta, P.K. and D.J. Durzan, 1987. Somatic embryos from protoplasts of loblolly pine proembryonal cells. Bio/Technology 5: 710–712.CrossRef
    17. Hakman, I., Fowke, L.C., von Arnold, S. and T. Eriksson 1985. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies ( Norway spruce ). Plant Sci. 38: 53–59.
    18. Huang, Y., Diner, A.M. and D.F. Karnosky, 1991. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev. Biol. 27: 201–207.
    19. Huang, Y.H., Stokke, D.D., Diner, A.M., Barnes, W.M. and D.F. Karnosky, 1993. Virulence of Agrobacterium on Larix decidua and their cellular interactions as depicted by scanning electron microscopy. J. Exp. Bot. 44: 1191–1201.
    20. Keegan III, C.E., Blatner, K.A. and D.P. Whichman, 1992. Use an value of western larch as a commercial timber species. In: Schmidt WC, McDonald KJ (eds) Symposium on ecology and management of Larix forests: a look ahead. US Dept Agr, Forest Sery Intermountain Research Station, Whitefish pp. 155–157
    21. Jourdain, I., Lelu, M.A. and P. Label, 1997. Hormonal changes during growth of somatic embryogenic masses in hybrid larch. Plant Physiol. Bioch. 35: 741–749.
    22. Koncz, C. and J. Schell, 1986. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 383–396.
    23. Klimaszewska, K. 1989. Plantlet development from immature zygotic embryos of hybrid larch through somatic embryogenesis. Plant Sci. 63: 95–103.CrossRef
    24. Klimaszewska, K., Devantier, Y., Lachance, D., Lelu, M.A. and P.J. Charest, 1997. Larix laricina (tamarack): Somatic embryogenesis and genetic transformation. Can. J. For. Res. 27: 538–550.
    25. Lelu, M.A., Bastien, C., Klimaszewska, K., Ward, C. and P.J. Charest, 1994a. An improved method for somatic plantlet production in hybrid larch (Larix x leptoeuropaea) 1. Somatic embryo maturation. Plant Cell Tiss. Org. Cult. 36/ 107–115.
    26. Lelu, M.A., Bastien, C., Klimaszewska, K. and P.J. Charest, 1994b. An improved method for somatic plantlet production in hybrid larch (Larix x leptoeuropaea) 2. Control of germination and plantlet development. Plant Cell Tiss. Org. Cult. 36: 117–127.
    27. Lelu, M.A., Klimaszewska, K. and P.J. Charest, 1994c. Somatic embryogenesis from immature and mature zygotic embryos and from cotyledons and needles of somatic plantlets of Larix. Can. J. For. Res. 20: 100106.
    28. Lelu, M.A., Klimaszewska, K., Pflaum, G. and C. Bastien, 1995. Effect of maturation duration on desiccation tolerance in hybrid larch (Larix x leptoeuropaea Dengler) somatic embryos. In Vitro Cell. Dev. Biol. 31: 15–20.
    29. Lelu, M.A., Dauvillier, S. and G. Pilate, submitted. High efficiency Agrobacterium tumefaciens -mediated transformation of hybrid larch (Larix kaempferi x Larix decidua) and transgenic plant production.
    30. LePage, B.A. and J.F. Basinger, 1992. The evolutionary history of the genus Larix (Pinaceae). In: Schmidt WC, McDonald KJ (eds) Symposium on ecology and management of Larix forests: a look ahead. US Dept Agr, Forest Sery Intermountain Research Station, Whitefish pp. 19–29.
    31. Leplé, J.C., Brasileiro, A.C.M., Michel, M.F. Delmotte, F. and L. Jouanin, 1992. Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep. 11: 137–141.
    32. Levée, V., Lelu, M.A., Jouanin, L., Cornu, D. and G. Pilate, 1997. Agrobacterium tumefaciens-mediatedtransformation of hybrid larch (Larix kaempferi x L-decidua) and transgenic plant regeneration. Plant Cell Rep. 16: 680–685.
    33. Owens, J.N. 1992. Reproductive biology of larch. In: Schmidt WC, McDonald KJ (eds) Symposium on ecology and management of Larix forests: a look ahead. US Dept Agr, Forest Sery Intermountain Research Station, Whitefish pp. 97–109.
    34. Pâques, L.E. 1989. A critical review of larch hybridization and its incidence on breeding strategies. Ann. Sci. For. 46: 141–153.
    35. Pâques, L.E. 1992. Performance of vegetatively propagated Larix deciduaL. kaemferi and L. laricina hybrids. Ann. Sci. For. 49: 63–74.
    36. Pâques, L.E. and P. Rozenberg, 1995. Intraspecific variability of European Larch for wood properties: preliminary results. In: IUFRO Working Party S2–02–07, Swedish Univ. Agric. Sci. Umea, Reports N°39, pp 21–33
    37. Pilate, G., Leplé, J.C., Lapierre, C., Pollet, B., Baucher, M., van Doorsselaere, J., Boerjan, W., Petit-Conil, M., de Nadal, V. and L. Jouanin,1997a. Transgenic poplar trees with altered lignin and improved pulping characteristics. In: Tappi (ed) Tappi Biological Sciences Symposium October 19–23 San Francisco. Tappi Press, Atlanta pp. 507–514.
    38. Pilate, G., Dauvillier, S., Levée, V., Leplé, J.C., Gouez, M.L. and M.A. Lelu, 1997b. Agrobacteriummediated transformation of hybrid larch and production of transgenic plants. In: Tappi (ed) Tappi Biological Sciences Symposium October 19–23 San Francisco. Tappi Press, Atlanta pp 515–518.
    39. Robertson, D., Weissinger, A.K., Ackley, R., Glover, S., and R.R. Sederoff, 1992. Genetic transformation of Norway spruce (Picea ables (L.) Karst) using somatic embryo explants by microprojectile bombardment. Plant Mol. Biol. 19: 925–935.
    40. Schmidt, W.C. 1992. Around the world with Larix: an introduction. In: Schmidt WC, McDonald KJ (eds) Symposium on ecology and management of Larix forests: a look ahead. US Dept Agr, Forest Sery Intermountain Research Station, Whitefish pp. 6–18.
    41. Shin, D.I., Podila, G.K., Huang, Y.H. and D.F. Karnosky, 1994. Transgenic larch expressing genes for herbicide and insect resistance. Can. J. For. Res. 24: 2059–2067.
    42. van Doorsselaere, J., Baucher, M., Chognot, E., Chabbert, B., Tollier, M.T., Petit-Conil, M., Leplé, Pilate, G., Cornu, D., Monties, B., van Montagu, M., Inze, D., Boerjan, W. and L. Jouanin, 1995. A novel lignin in poplar trees with a reduced caffeic acid 5-hydroxyferulic acid 0-methyltransferase activity. Plant J. 8: 855–864.
    43. Walter, C., Grace, L.J., Wagner, A., White, D.W.R., Walden, A.R., Donaldson, S.S., Hinton, H., Gardner, R.C. and D.R. Smith, 1998. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep. 17: 460–468.

    For further details log on website :
    http://link.springer.com/chapter/10.1007/978-94-017-2313-8_3

    No comments:

    Post a Comment