Blog List

Monday 18 July 2016

Cork as a building material: a review

Published Date
First online: 

Title 

Cork as a building material: a review

  • Author 
  • Sofia Knapic 
  • Vanda Oliveira
  • José Saporiti Machado
  • Helena Pereira

  • Abstract 

  • This review focuses on cork as a natural, renewable and sustainable construction raw-material. Cork has an unusual combination of properties making it suitable for application in buildings and infrastructures, for example insulation, wear-resistance and durability. The material properties combined with a favourable ecological footprint allow designers, architects and engineers to meet some of the Green Building demands. A summary on cork production, structure, chemistry and properties was made. The processing into cork-based products, for example cork agglomerates and composites, is detailed as well as their properties and applications in construction. The aptitude of cork-based products for compliance with sustainability and energy efficiency criteria is also addressed.

  • References 

    1. Abenojar J, Barbosa AQ, Ballesteros Y, del Real JC, da Silva LFM, Martínez MA (2014) Effect of surface treatments on natural cork: surface energy, adhesion, and acoustic insulation. Wood Sci Technol 48:207–224CrossRef
    2. Anjos O, Pereira H, Rosa ME (2010) Tensile properties if cork in the tangential direction: variation with quality, porosity, density and radial position in the cork plank. Mater Design 31(4):2085–2090CrossRef
    3. Anjos O, Pereira H, Rosa ME (2011) Characterization of radial bending properties of cork. Eur J Wood Wood Prod 69(4):557–563CrossRef
    4. Anjos O, Rodrigues C, Morais J, Pereira H (2014) Effect of density on the compression behaviour of cork. Mater Design 53:1089–1096CrossRef
    5. Aziz MA, Murphy CK, Ramaswamy SD (1979) Lightweight concrete using cork granules. Int J Lightweight Concrete 1(1):29–33CrossRef
    6. Blengini GA, Di Carlo T (2010) The changing role of life cycle phases, subsystems and materials in the LCA of low energy buildings. Energ Buildings 42:869–880CrossRef
    7. Branco FG, Tadeu A, Reis MLBC (2007) Can cork be used as a concrete aggregate? Int J Housing Sci 31(1):1–11
    8. Branco FG, Reis MLBC, Tadeu A (2008) Experimental evaluation of the durability of cork concrete. Int J Hous Sci 32:149–162
    9. Brazinha C, Fonseca AP, Pereira H, Teodoro OMND, Crespo JG (2013) Gas transport through cork: modelling gas permeation based on the morphology of a natural polymer material. J Membrane Sci 428:52–62CrossRef
    10. Castro I, Simoes N, Tadeu A, Branco FG (2011) Acoustic and thermal behaviour of concrete building blocks with cork. In: 6th Dubrovnik conference on sustainable development of energy water and environment systems. Dubrovnik, Croatia
    11. Castro O, Silva JM, Tessaleno D, Silva A, Gil L (2010) Cork agglomerates as an ideal core material in lightweight structures. Mater Design 31:425–432CrossRef
    12. Chagas JAM (2009) A method for producing a multilayer press plate. Patent Number(s): DE102008004154-A1; WO2009091272-A1; EP2237936-A1. Patent Assignee Name(s) and Code(s): AMORIM REVESTIMENTOS SA (AMOR-Non-standard)
    13. Coelho JAT, Sousa Lamas AGDBF (2011) Ceramic laminated panel with cork and fibres. Patent Number(s): WO2011115514-A2; PT105013-A1; WO2011115514-A3. Patent Assignee Name(s) and Code(s): AMORIM CORK COMPOSITES SA (AMOR-Non-standard), ALELUIA CERAMICAS SA (ALEL-Non-standard)
    14. Coelho MB, Paulo JA, Palma JHN, Tomé M (2012) Contribution of cork oak plantations installed after 1990 in Portugal to the Kyoto commitments and to the landowners economy. For Policy Econ 17:59–68CrossRef
    15. Cordeiro N, Pascoal Neto C, Gandini A, Belgacem MN (1995) Characterization of the cork surface by inverse gas chromatography. J Colloid Interface Sci 174:246–249CrossRef
    16. Costa A, Pereira H, Oliveira A (2003) Variability of radial growth in cork oak adult trees under cork production. For Ecol Manag 175(1–3):239–246CrossRef
    17. David JA (2012) Element dossature en liege et resine armee et technique de fabrication. (Skeleton element built with cork and resin and manufacturing technique). Patent Number: FR2975628-A1. Patent Assignee Name(s) and Code(s): DAVID J A(DAVI-Individual)
    18. de-Carvalho R, Teixeira-Dias F, Varum H (2013) Cyclic behaviour of a lightweight mortar with cork granulate composite. Compos Struct 95:748–755CrossRef
    19. Demertzi M, Garrido A, Dias AC, Arroja L (2015) Environmental performance of a cork floating floor. Mater Design 82(5):317–325CrossRef
    20. Díaz-Parralejo A, Díaz-Díez MA, Macías-García A, de la Rosa-Blanco P, Serrano VG (2003) Bending strength of black and composite agglomerates of cork. Mater Lett 57:4004–4008CrossRef
    21. ETA 11/0004 (2011) Agglomerated composition cork mat for improvement of impact sound insulation ACOUSTICCORK T61. European Technical Approval, 2011, http://​www.​lnec.​pt/​qpe/​eta/​ETA_​11004_​en.​pdf
    22. Evert RF (2006) Esau’s plant anatomy, meristems, cells, and tissues of the plant body, their structure, function, and development. John Wiley & Sons Inc, New JerseyCrossRef
    23. Faria DP, Fonseca AL, Pereira H, Teodoro OMND (2011) Permeability of cork to gases. J Agric Food Chem 59(8):3590–3597CrossRefPubMed
    24. Fernandes EM, Correlo VM, Chagas JAM, Mano JF, Reis RL (2010) Cork based composites using polyolefin’s as matrix: morphology and mechanical performance. Compos Sci Technol 70:2310–2318CrossRef
    25. Fernandes EM, Correlo VM, Chagas JAM, Mano JF, Reis RL (2011a) Properties of new cork-polymer composites: advantages and drawnbacks as compared with commercially available fibreboard materials. Compos Struct 93:3120–3129
    26. Fernandes EM, Silva VMCD, Chagas JAM, Reis RLGD (2011b) Fibre-reinforced cork-based composites. Patent Number(s): WO2011014085-A2; PT104704-A1; WO2011014085-A3. Patent Assignee Name(s) and Code(s): AMORIM REVESTIMENTOS SA (AMOR-Non-standard)
    27. Fernandes EM, Mano JF, Reis RL (2013a) Hybrid cork–polymer composites containing sisal fibre: morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction. Compos Struct 105:153–162CrossRef
    28. Fernandes EM, Correlo VM, Mano JF, Reis RL (2013b) Novel cork–polymer composites reinforced with short natural coconut fibres: effect of fibre loading and coupling agent addition. Compos Sci Technol 78(1):56–62CrossRef
    29. Fernandes EM, Correlo VM, Mano JF, Reis RL (2014) Polypropylene-based cork–polymer composites: processing parameters and properties. Compos Part B Eng 66:210–223CrossRef
    30. Ferreira EP, Pereira H (1986) Algumas alterações anatómicas e químicas da cortiça no fabrico de aglomerados negros. (Some anatomical and chemical changes of cork in the manufacture of black agglomerates) (In Portuguese). Cortiça 576:274–279
    31. Ferreira A, Lopes F, Pereira H (2000) Caractérisation de la croissance et de la qualité du liège dans une région de production (Characterization of the growth and quality of cork in a production area) (In French). Ann For Sci 57(2):187–193CrossRef
    32. Fonseca AL, Brazinha C, Pereira H, Crespo JG, Teodoro OMND (2013) Permeability of cork for water and ethanol. J Agr Food Chem 61:9672–9679CrossRef
    33. Fortes MA, Nogueira MT (1989) The Poisson effect in cork. Mater Sci Eng A122:227–232CrossRef
    34. Fortes MA, Rosa ME, Pereira H (2004) A cortiça. (Cork) (In Portuguese) IST press, Lisboa
    35. Gang C, Kang CK (2011) Construction method of environmental friendly elastic plate. Patent Number(s): KR2010089643-A; KR1068547-B1. Patent Assignee Name(s) and Code(s): SAEMOON CO LTD (SAEM-Non-standard)
    36. Gibson LJ, Easterlinge KE, Ashby MF (1981) The structure and mechanics of cork. In: Proceedings of the Royal Society of London; p. 99–117
    37. Gil L (1998) Cortiça—Produção, Tecnologia e, Aplicação edn. INETI, Lisboa
    38. Gil L (2007) Cork as a building material. Technical manual. APCOR, Santa Maria de Lamas, Portugal, p 2007
    39. Gil L (2011) Environmental, sustainability and ecological aspects of cork products for building. Ciência Tecnologia dos Materiais 23(1/2):87–90
    40. Gil AM, Lopes MH, Pascoal Neto C, Callaghan PT (2000) An NMR microscopy study of water absorption in cork. J Mater Sci 35(8):1891–1900CrossRef
    41. Godinho MH, Martins AF, Belgacem MN, Gil L, Cordeiro N (2001) Properties and processing of cork powder filled cellulose derivatives composites. Macromol Symp 169:223–228CrossRef
    42. Gomes CMCPS, Fernandes AC, Almeida BJVS (1993) The surface tension of cork from contact angle measurements. J Colloid Interf Sci 156:195–201CrossRef
    43. Graça J, Pereira H (2004) The periderm development in Quercus suber. IAWA J 25(3):325–335CrossRef
    44. Hernandéz-Olivares F, Bollati MR, del Rio M, Parga-Landa B (1999) Development of cork gypsum composites for building applications. Constr Build Mater 13:179–186CrossRef
    45. Hoang CP, Kinney KA, Corsi RL (2009) Ozone removal by green building materials. Build Environ 44:1627–1633CrossRef
    46. Kalbe M (2011) Fiber composite materials of construction, particularly for roof liner structures. Patent Number(s): US2011250807-A1. Patent Assignee Name(s) and Code(s): BASF SE(BADI-C)
    47. Kibert CJ (2008) Sustainable Construction: Green Building Design and Delivery. Wiley, New York
    48. Král P, Límek P, Mishra PK, Rademacher P, Wimmer R (2014) Preparation and characterization of cork layered composite plywood boards. Bioresources 9(2):1977–1985CrossRef
    49. La Rosa AD, Recca A, Gagliano A, Summerscales J, Latteri A, Cozzo G, Cicala G (2014) Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Constr Build Mater 55:406–414CrossRef
    50. Lakreb N, Bezzazia B, Pereira H (2015a) Mechanical strength properties of multilayered sandwich panels of wood veneer and a core of cork agglomerates. Mater Design 65:627–636CrossRef
    51. Lakreb N, Bezzazia B, Pereira H (2015b) Mechanical strength properties of innovative sandwich panels with expanded cork agglomerates. Eur J Wood Products 73:465–473CrossRef
    52. Lee BW, Shim SB (2009). System for recycling rain of building roof. Patent Number(s): KR100913787 (B1). Patent Assignee Name(s) and Code(s): PLAN A CO LTD (PLAN-Non-standard)
    53. Lequin S, Chassagne D, Karbowiak T, Simon JM, Paulin C, Bellat JP (2012) Diffusion of oxygen in cork. J Agric Food Chem 60(13):3348–3356CrossRefPubMed
    54. Machado Pinto Germano JM (2014) Flexible Panels Made Of Expanded Cork Agglomerate With Optical Fibers. Patent Number(s): WO2014021727A1. Patent Assignee Name(s) and Code(s): Joao Manuel Machado Pinto Germano
    55. Maderuelo-Sanz R, Morillas JMB, Escobar VG (2014a) Acoustical performance of loose cork granules. Eur J Wood Prod 72:321–330CrossRef
    56. Maderuelo-Sanz R, Morillas JMB, Escobar VG (2014b) The performance of resilient layers made from cork granulates mixed with resins for impact noise reduction. Eur J Wood Prod 72:833–835CrossRef
    57. Mano JF (2002) The viscoelastic properties of cork. J Mater Sci 37(2):257–263CrossRef
    58. Marques AV, Pereira H (2013) Lignin monomeric composition of corks from the barks of Betula pendulaQuercus suber and Quercus cerris determined by Py-GC-MS/FID. J Anal Appl Pyrolysis 100:88–94CrossRef
    59. Medeiros H (1945) Steambaked insulation corkboard. Methods and plans for application in civil constructions, Junta Nacional da Cortiça, Lisboa
    60. Mestre A, Vogtlander J (2013) Eco-efficient value creation of cork products: an LCA-based method for design intervention. J Cleaner Production 57:101–114CrossRef
    61. Moreira RAS, de Melo FJQ, Dias Rodrigues JF (2010) Static and dynamic characterization of composition cork for sandwich beam cores. J Mater Sci 45(12):3350–3366CrossRef
    62. Nóvoa PJRO, Ribeiro MCS, Ferreira AJM, Marques AT (2004) Mechanical characterization of lightweight polymer mortar modified with cork granulates. Compos Sci Techn 64:2197–2205CrossRef
    63. Oliveira V, Knapic S, Pereira H (2012) Natural variability of surface porosity of wine cork stoppers of different commercial classes. J Int Sci Vigne Vin 46:331–340
    64. Oliveira V, Rosa ME, Pereira H (2014) Variability of the compression properties of cork. Wood Sci Technol 48:937–948CrossRef
    65. Panesar DK, Shindman B (2012) The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement Concrete Comp 34:982–992CrossRef
    66. Pargana N, Pinheiro MD, Silvestre JD, Brito J (2014) Comparative environmental life cycle assessment of thermal insulation materials of buildings. Energ Buildings 82:466–481CrossRef
    67. Pereira H (2007) Cork: Biology. Production and Uses, Elsevier, Amsterdam
    68. Pereira H (2013) Variability of the chemical composition of cork. BioResources 8(2):2246–2256
    69. Pereira H (2015) The rationale behind cork properties: a review of structure and chemistry. Bioresources 10(3):6207–6229CrossRef
    70. Pereira H, Rosa ME, Fortes MA (1987) The celular structure of cork from Quercus suber L. IAWA Bull 8(3):213–218CrossRef
    71. Pereira H, Graça J, Baptista C (1992) The effect of growth rate on the structure and compressive properties of cork from Quercus suber L. IAWA Bull 13(4):389–396CrossRef
    72. Pereira H, Lopes F, Graça J (1996) The evaluation of the quality of cork planks by image analysis. Holzforschung 50:111–115CrossRef
    73. Pereira HMN, Reis RLG, Martins SPASE, Marques AJV (2009) Process of cork pre-expansion by submission to microwave radiation and resulting product thereof. Patent Number(s): EP2125310 A1; EP2125310B1; WO2008115086A1
    74. Pereira C, Caldeira F, Ferreira JMF, Irle MA (2012) Characterization of cement-bonded particleboards manufactured with maritime pine, blue gum and cork grown in Portugal. Eur J Wood Prod 70(1–3):107–111CrossRef
    75. Peuportier B, Thiers S, Guiavarch A (2013) Eco-design of buildings using thermal simulation and life cycle assessment. J Cleaner Prod 39:73–78CrossRef
    76. Ramesh T, Prakasha R, Shuklab KK (2010) Life cycle energy analysis of buildings: an overview. Energ Buildings 42:1592–1600CrossRef
    77. Río Merino M, Astorqui JSC, Olivares FH (2005) New prefabricated elements of lightened plaster used for partions and extrados. Constr Build Mater 19(5):487–492CrossRef
    78. Rives J, Fernandez-Rodriguez I, Gabarrell X, Rieradevall J (2012) Environmental analysis of cork granulate production in Catalonia-Northern Spain. Resour Conserv Recy 58:132–142CrossRef
    79. Rosa ME, Fortes MA (1988) Densidade da Cortiça. Factores que a influenciam (Density of Cork. Factors that have influence) (In Portuguese) Cortiça 593:65–68
    80. Rosa ME, Fortes MA (1991) Deformation and fracture of cork in tension. J Mater Sci 26:341–348CrossRef
    81. Rosa ME, Fortes MA (1993) Water absorption by cork. Wood Fiber Sci 25(4):339–348
    82. Rosa ME, Pereira H (1994) The effect of long term treatment at 100–150 °C on structure, chemical composition and compression behaviour of cork. Holzforschung 48:226–232CrossRef
    83. Rosa ME, Pereira H, Fortes MA (1990) Effects of hot water treatment on the structure and properties of cork. Wood Fiber Sci 22:149–164
    84. Roseta MOZ da C (2013) Estudo laboratorial e em condições reais sobre o aglomerado de cortiça expandida aplicado como revestimento exterior. (Laboratory study and actual conditions on the expanded cork agglomerate applied as external surface covering) (In Portuguese) Dissertation Instituto Superior de Engenharia de Lisboa
    85. Salthammer T, Fuhrmann F (2000) Release of acetic acid and furfural from cork products. Indoor Air 10:133–134CrossRefPubMed
    86. Sen A, van den Bulcke J, Defoirdt N, van Acker J, Pereira H (2014) Thermal behaviour of cork and cork components. Thermochim Acta 582:94–100CrossRef
    87. Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL (2005) Cork: properties, capabilities, and applications. Int Mater Rev 50(6):345–365CrossRef
    88. Soares B, Reis L, Sousa L (2011) Cork composites and their role in sustainable development. Procedia Eng 10:3214–3219CrossRef
    89. Teixeira R, Pereira H (2009) Ultrastructural observations reveal the presence of channels between cork cells. Microsc Microanal 15(6):539–544CrossRefPubMed
    90. Vaz MF, Fortes MA (1998) Friction properties of cork. J Mater Sci 33:2087–2093CrossRef
    91. Vilela C, Sousa AF, Freire CSR, Silvestre AJD, Neto CP (2013) Novel sustainable composites prepared from cork residues and biopolymers. Biomass Bioenerg 55:148–155CrossRef
    92. WWWF (2006) Cork screwed? Environmental and economic impacts of the cork stoppers market. Report. ©WWF/MEDPO
    93. Yamazaki T, Nanko M, Nomura E (2011). Sheet-like heat insulation material and method of producing the same. Patent Number(s): JP2011241556-A. Patent Assignee Name(s) and Code(s): FUJI KOGYO KK(FUJA-C)
    94. Zabalza Bribián I, Usón AA, Scarpellini S (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46:1133–1140CrossRef
    95. Zheng L, Zheng Z, Li S, Qi W (2008) Cork rubber for use in e.g. floor, has parent metal, and coattail mortice and coattail tenon which are fixed on parent metal, and superficial layer i.e. coating layer, decorated on parent metal surface. Patent Number(s): CN201016209-Y. Patent Assignee Name(s) and Code(s): Zheng L(ZHEN-Individual)

  • For further details log on website :

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...