Thursday, 15 September 2016

The Role of Wood Material for Greenhouse Gas Mitigation

Published Date
Volume 11, Issue 5pp 1097–1127

Article
DOI: 10.1007/s11027-006-9035-8

Cite this article as: 
Gustavsson, L., Madlener, R., Hoen, H. et al. Mitig Adapt Strat Glob Change (2006) 11: 1097. doi:10.1007/s11027-006-9035-8

Author
  • R. Madlener
  • H.-F. Hoen
  • G. Jungmeier
  • T. Karjalainen
  • S. KlÖhn
  • K. Mahapatra
  • J. Pohjola
  • B. Solberg
  • H. Spelter

  • Abstract

    Based on an interdisciplinary perspective the role of wood as a carbon sink, as a multi-purpose material, and as a renewable energy source for the net reduction of greenhouse gases is discussed. We synthesize aspects from engineering, natural and social sciences to better understand the role of wood substitution in CO2 mitigation. We also formulate some recommendations on filling knowledge gaps that could be useful for policy making regarding how wood substitution could be further expanded. There are sufficient wood resources to substantially increase the use of wood for material and energy purposes. However, a number of factors hinder a wider use of wood for energy and material purposes. Furthermore, an analysis of wood substitution is a very complex issue, since the substitution influencing factors are to be found along the entire wood supply chain and involve several industries, socio-economic and cultural aspects, traditions, price dynamics, and structural and technical change. To improve the knowledge about wood as a substitute for other resources and the implications, it would be helpful to better integrate research from different disciplines on the subject and to cover different scales from a project to an economy-wide level.

    References

    1. Apps, M.J., Kurz, W.A., Beukema, S.J. and Bhatti, J.S.: 1999, ‘Carbon budget of the Canadian forest product sector’, Environmental Science and Policy 2(1), 25–41.CrossRef
    2. Bass, F.M.: 1969, ‘A new product growth model for consumer durables’, Management Science 13(5), 215–227.CrossRef
    3. Becker, G.: 1992, ‘Die Bedeutung des Roh- und Werkstoffes Holz für die Zukunft sichern – eine Herausforderung für die Holzforschung – (To secure the future importance of wood as raw material – a challenge for wood research)’, Forstarchiv 63, 80–84 (in German).
    4. Bengtson, A.: 2003, ‘Framing technological development in a concrete context – the use of wood in the Swedish construction industry. Ph.D. thesis, Department of Business Studies, Uppsala University, Uppsala, Sweden.
    5. Bolkesjø, T.F., Trømborg, E. and Solberg, B.: 2004, Forest-based bioenergy use in Norway to 2010 – potential and impacts on prices and production in the forest sector. In T.F. Bolkesjø (ed.), Modeling supply, demand and trade in the Norwegian forest sector. Dr. Scient. thesis 2004:10. Agricultural University of Norway.
    6. Böhringer, C.: 1998, ‘The synthesis of bottom-up and top-down in energy policy modelling’, Energy Economics 20(3), 233–248.CrossRef
    7. Börjesson, P. and Gustavsson, L.: 2000, ‘Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives’, Energy Policy 28(9), 575–588.CrossRef
    8. Börjesson, P., Gustavsson, L., Christersson, L. and Linder, S.: 1997, ‘Future production and utilization of biomass in Sweden: Potentials and CO2 mitigation’, Biomass and Bioenergy13(4), 399–412.CrossRef
    9. Breuss, F. and Steininger, K.: 1998, ‘Biomass energy use to reduce climate change: A general equilibrium analysis for Austria’, Journal of Policy Modeling 20(4), 513–535.CrossRef
    10. Brown, S., Sathaye, J., Cannell, M. and Kauppi, P.E.: 1996, ‘Management of forests for mitigation of greenhouse gas emissions’, In R.T. Watson, M.C. Zinyowera, R.H. Moss and D.J. Dokken (eds.), Climate Change 1995 – Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, pp. 773–797.
    11. Burrows, J. and Sannes, B. (eds.): 1998, The Competitive Climate for Wood Products and Paper Packaging; the Factors Causing Substitution with Emphasis on Environmental Promotions. The joint FAO/ECE team of public relations specialists in the forest and forest industries sector, 205 pp.
    12. Burschel, P., Kuersten, E. and Larson, B.C.: 1993, Die Rolle von Wald und Forstwirtschaft im Kohlenstoffhaushalt. Eine Betrachtung für die Bundesrepublik Deutschland. (Role of Forests and forestry in the carbon cycle; a try-out for Germany). Forstliche Forschungsberichte München, Schriftenreihe der Forstwissenschaftlichen Fakultät der Universität München und der Bayerischen Forstlichen Versuchs- und Forschungsanstalt, 126, 135 pp.
    13. de la Roche, I., O'Conner, J. and Tetu, P.: 2003, ‘Wood products and sustainable construction. Special paper in congress proceedings’, XII World Forestry Congress, 21–28 September 2003, Quebec City, Canada.
    14. EU: 1999, Council Directive on the Landfill of Waste. Council of the European Union, 1999/31/EC, Brussels.
    15. EU: 2003, Draft Discussion Document for the Ad Hoc Meeting on Biowastes and Sludges, 15–16 January 2004. Brussels, European Commission, DG ENV.A.2/LM, Brussels.
    16. Gielen, D.J., de Feber, M.A.P.C., Bos, A.J.M. and Gerlagh, T.: 2001, ‘Biomass for energy or materials?: A Western European systems engineering perspective’, Energy Policy 29(4), 291–302.CrossRef
    17. Griffin, J.M.: 1993, ‘Methodological advances in energy modelling: 1970–1990’, The Energy Journal 14(1), 111–124.
    18. Gustavsson, L., Pingoud, K. and Sathre, R.: 2004, ‘Carbon dioxide balance of wood substitution: Comparing concrete- and wood-framed buildings (manuscript).
    19. Gustavsson, L. and Sathre, R.: 2004, Variability in energy and carbon dioxide balances of wood and concrete building materials (Manuscript).
    20. Gustavsson, L., Karjalainen, T., Marland, G., Savolainen, I., Schlamadinger, B. and Apps, M.: 2000, ‘Project-based greenhouse gas accounting: Guiding principles with focus on baselines and additionality’, Energy Policy 28(13), 935–946.CrossRef
    21. HAF (Holzabsatzfonds): 2000, Holzkultur. (Wood Culture), Timber Sales Promotion Fund. Bonn, Germany, 39 pp. (in German).
    22. HAF (Holzabsatzfonds): 2001, Telefonbefragung Banken/Versicherungen/Bausparkassen (Telephone survey of banks/insurance companies/mortgage banks), Timber Sales Promotion Fund. Infobrief 1/2001, p. 2. (in German).
    23. Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A. and Maskell, K.: 1996, Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 572 pp.
    24. Järvinen, E., Toivonen, R. and Enroth, R.-R.: 2001, Competence and image of wood on the German building material markets. Pellervo Economic Research Institute, Helsinki, Finland, Working Paper No. 50, December.
    25. Jungmeier, G., Werner, F., Jarnehammar, A., Hohenthal, C. and Richter, K.: 2002, ‘Allocation in LCA of Wood-based Products: Experiences of Cost Action E9. Part I. Methodology’, Int. J. LCA 7(6), 369–375.
    26. Karjalainen, T.: 1996, ‘Dynamics and potentials of carbon sequestration in managed stands and wood products in Finland under changing climatic conditions’, Forest Ecology and Management 80(1–3), 113–132.CrossRef
    27. Karlsson, Å. and Gustavsson, L.: 2003, ‘External costs and taxes in heat supply systems’, Energy Policy 31(14), 1541–1560.CrossRef
    28. Kauppi, P. and Sedjo, R.: 2001, ‘Technological and Economic Potential of Options to Enhance, Maintain, and Manage Biological Carbon Reservoirs and Geo-engineering’, In B. Metz, O. Davidson, R. Swart and J.H. Pan (eds.), Climate Change 2001: Mitigation, IPCC Third Assessment Report Vol. 3, New York, Academic Press, http://www.grida.no/climate/ipcc_tar/wg3/index.htm.
    29. Koopmans, C.C. and Willem te Velde, D.: 2001, ‘Bridging the energy efficiency gap: Using bottom-up information in a top-down energy demand model’, Energy Economics 23(1), 57–75.CrossRef
    30. van de Kuilen, J.-W.G.: 2001, Research of wood as a construction material and current situation of wood construction in the Netherlands. Wood Construction Network Seminar, 7 November 2001, Lahti, Finland, http://www.vtt.fi/rte/bss/cooperation/paneuro/holland-kuilen.pdf.
    31. Madlener, R. and Gustavsson, L.: 2002, Socio-economics of the diffusion of innovative bioenergy technologies: The case of small pellet heating systems in Austria. In: Segon, V. and Domac, J. (eds.), Proceedings of the Workshop “Socio-Economic Aspects of Bioenergy Systems: Issues Ahead”, Cavtat, Croatia, 19–21 September 2002, published by IEA Bioenergy Task 29/Energy Institute ‘Hrvoje Pozar’, Zagreb/Croatia, March 2003, pp. 5–24.
    32. Mansfield, E.: 1961, ‘Technical change and the rate of imitation’, Econometrica 29(Oct.), 741–766.CrossRef
    33. Mantau, U.: 1995, ‘Marktanteile der fensterrahmenstoffe verändern sich (Market share of materials for window frames are changing)’, Holz-Zentralblatt 121(137), 2245–2246 (in German).
    34. Marland, G. and Schlamadinger, B.: 1997, ‘Forests for carbon sequestration or fossil fuel substitution? A sensitivity analysis’, Biomass and Bioenergy 13(6), 389–397.CrossRef
    35. Matthews, R., Nabuurs, G.J., Alexeyev, V., Birdsey, R.A., Fischlin, A., MacLaren, J.P., Marland, G. and Price, D.: 1996, Evaluating the role of forest management and forest products in the carbon cycle, in M.J. Apps and D.T. Price (eds.), Forest ecosystems, forest management and the global carbon cycle, WG3 Summary in NATO Advanced Science Institute Series, NATO-ASI Vol. I 40, Berlin, Heidelberg, Proceedings of a workshop held in September 1994 in Banff, Canada, pp. 293–301.
    36. McKibbin, W.J.: 1998, Forecasting the world economy using dynamic intertemporal general equilibrium multi-country models, Invited Paper for the Business Symposium on Economic Forecasting, Sydney, 1 Oct 2003, September.
    37. McKibbin, W.J. and Wilcoxen, P.J.: 2003, Estimates of the costs of Kyoto-Marrakesh versus the McKibbin-Wilcoxen Blueprint. Departmental Papers, Australian National University, February.
    38. McKibbin, W.J and Sachs, J.D.: 1989, The McKibbin-Sachs global model. NBER Working Paper Series, National Bureau of Economic Research, Cambridge, MA., Working paper No. 3100.
    39. MCPFE: 1993, General Guidelines for the Sustainable Management of Forests in Europe. Resolution H1, The Second Ministerial Conference on the Protection of Forests in Europe, Helsinki, Finland.
    40. MCPFE: 2003a, Improved Pan-European Indicators for Sustainable Forest Management. Adopted by the MCPFE Expert Level Meeting 7–8 October 2002, Vienna, Austria. MCPFE Liason Unit Vienna.
    41. MCPFE: 2003b. Vienna Declaration and Vienna Resolutions. Adopted at the Fourth Ministerial Conference on the Protection of Forests in Europe. 28–30 April 2003. Vienna, Austria. MCPFE Liason Unit Vienna.
    42. Metla: 2004, Metla House – a building for forest research employs wood in innovative ways, Press release, 10 November 2004, Finnish Forest Research Institute, Helsinki, Finland, http://www.metla.fi/tiedotteet/2004/2004-11-10-metla-house.htm.
    43. Müller, T.: 2000, Integrating bottom-up and top-down models for energy policy analysis: A dynamic framework. CUEPE Report No. 00.02. University of Geneva, Switzerland, November.
    44. Nabuurs, G.J., Pussinen, A., Karjalainen, T., Erhard, M. and Kramer, K.: 2002, ‘Increment changes in European forests due to climate change’, Global Change Biology 8, 1–13.CrossRef
    45. Nilsson, S.: 2001, The future of the European solid wood industry. Interim Report IR-01–001, International Institute for Applied Systems Analysis, Laxenburg, Austria.
    46. Östman, B.: 1997, Fire safe wood house – a Nordic Wood Project (Brandsäkra trähus – ett Nordic Wood Projekt). Final Report – phase 1, Trätek Rapport, P 9702014, cf. Bengtsson, 2003.
    47. Petersen, A.K. and Solberg, B.: 2002, ‘Greenhouse gas emissions, life-cycle inventory and cost-efficiency of using laminated wood instead of steel construction. Case: Beams at Gardermoen airport’, Environmental Science & Policy 5(2), 169–182.CrossRef
    48. Petersen, A.K. and Solberg, B.: 2003, ‘Substitution between floor constructions in wood and natural stone: Comparison of energy consumption, greenhouse gas emissions, and costs over the life cycle’, Can. J. For. Res 33(6), 1061–1075.CrossRef
    49. Petersen, A.K. and Solberg, B.: 2005, Environmental and economic impacts of substitution between wood products and alternative materials: A review of micro-level analyses from Norway and Sweden. Forest Policy and Economics 7(3), 249–259.CrossRef
    50. Radkau, J. and Schäfer, I.: 1987, Holz – Ein Naturstoff in der Technikgeschichte (Wood – A Natural Material in History of Techniques) Deutsches Museum Kulturgeschichte der Naturwissenschaften und der Technik. Rowohlt Taschenbuchverlag GmbH, Reinbek bei Hamburg, Germany, 313 pp. (in German).
    51. Reid, H., Huq, S., Inkinen, A., MacGregor, J., Macqueen, D., Mayers, J., Murray, L. and Tipper, R.: 2004, Using wood products to mitigate climate change: A review of evidence and key issues for sustainable development. International Institute of Environment and Development. January, 90 pp. http://www.iied.org/docs/climate/wood_climatechange.pdf.
    52. Renner, T.: 1998, Hausbau und Holzimage – Wachstumsmarkt oder ewiger Hoffnungsträger? (House construction and wood image – Growing market or everlasting hope?), in Bartelheimer, P., Moog, M. and Suda, M. (eds.), Waldbewirtschaftung und Holzimage Konzepte und Probleme. Forstliche Forschungsberichte München 172/1998. 29 – 48 (in German).
    53. Rosenbaum, A.: 2001, Holzabsatzförderung – Strategien im Zentralen Marketing für Forst & Holz. (Wood sale promotion – Strategies of the marketing for forest and wood) Deutscher Forstverein e.V. 60. Jahrestagung. Dresden, 126–136 (in German).
    54. Sampson, R.N., Apps, M., Brown, S., Cole, C.V., Downing, J., Heath, L.S., Ojima, D.S., Smith, T.M., Solomon, A.M. and Wisniewski, J.: 1993, ‘Workshop Summary Statement – Terrestrial Biospheric Carbon Fluxes – Quantification of Sinks and Sources of CO2’, Water Air and Soil Pollution 70(1–4), 3–15.
    55. Schlamadinger, B, Apps, M., Bohlin, F., Gustavsson, L., Jungmeier, G., Marland, G., Pingoud, K. and Savolainen, I.: 1997, ‘Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems’, Biomass and Bioenergy 13(6), 359–375.CrossRef
    56. Schulz, H.: 1993, ‘Entwicklung der Holzverwendung im 19., 20. und 21. Jahrhundert (Development of wood utilization in the 19th, 20th and 21st Century)’, Holz als Roh- und Werkstoff 51, 75–82 (in German).CrossRef
    57. Spelter, H.: 1984, ‘Price elasticities of demand for softwood plywood and structural particleboard in the United States’, Can. J. For. Res14, 528–535.CrossRef
    58. Spelter, H.: 1985, ‘A product diffusion approach to modeling softwood lumber demand’, Forest Sci31(3), 685–700.
    59. Spelter, H.: 1995, ‘Emerging non-wood building materials in residential construction’, Forest Prod. J46(7/8), 29–36.
    60. Statistisches Bundesamt: 2002, Fachserie 5, Reihe1. Genehmigte Bauvorhaben im Hochbau (Permits of building constructions). Wiesbaden, Germany (in German).
    61. TBFRA: 2000, Temperate and boreal forest resource assessment. United Nations Economic Commission for Europe, http://www.unece.org/trade/timber/fra/welcome.htm.
    62. Toratti, T.: 2001, ‘A survey on the current situation and research needs of wood construction in Europe. Wood Construction Network Seminar, 7 November 2001, Lahti, Finland, http://www.vtt.fi/rte/bss/cooperation/paneuro/toratti_survey_paper.pdf.
    63. UNECE: 1996, Cut trees to save environment? Europe is losing its wood markets!, Press Release, United Nations Economic Commission for Europe, http://www.unece.org/press/tim1e.htm.
    64. UNECE/FAO: 2003, Forest products annual market analysis 2002–2004. Timber bulletinLVI (3), Timber Branch, United Nations Economic Commission for Europe/Food and Agricultural Organization of the United Nations, Geneva.
    65. UNFCCC: 1997, Kyoto Protocol to the United Nations Framework Convention on Climate Changehttp://unfccc.int/resource/convkp.html.
    66. Verband der Fenster- und Fassadenhersteller: 2002, Der deutsche Fenstermarkt (The German window market) 12/2001, http://www.window.de (in German).
    67. Watson, R.T., Zinyowera, M.C., Moss, R.H. and Dokken D.J. (eds.): 1996a, Impacts, Adaptations, and Mitigation of Climate Change: Scientific-Technical Analysis. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 878 pp.
    68. Watson, R.T, Zinyowera, M.C. and Moss, R.H. (eds.): 1996b, Technologies, policies and measures for mitigating climate change. Technical paper of the IPCC working Group IIhttp://www.gcrio.org/ipcc/techrepi/forest.html.
    69. Watson, R.T. and Core Writing Team (eds.): 2001a, Climate Change 2001: Synthesis Report, A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K., and New York, U.S.A., 398 pp.
    70. Watson, R.T., Noble, I.-R., Bolin, B., Ravindranath, N.H., Verardo, D.J. and Dokken, D.J. (eds.): 2001b, Land Use, Land-Use Change and Forestry. A Special Report of the IPCC, 377 pp.
    71. Winter, W.: 1995, ‘Holz ist der Werkstoff des 21. Jahrhunderts (Wood is the material of the 21st Century)’, Holz-Zentralblatt 121(2/3), 13,16,20 (in German).
    72. Wood Products Council: 1999, Wood used in new residential construction – 1998 and 1995. Tacoma, WA: APA – The Engineered Wood Association.
    73. Yoshida, Y., Ishitani, H. and Matsuhashi, R.: 2000, ‘Modelling energy system using three-dimensional input-output analysis’, Int. J. Global Energy Issues 13(1–3), 86–101.


    For further details log on website :
    http://link.springer.com/article/10.1007/s11027-006-9035-8

    No comments:

    Post a Comment