Wednesday, 14 September 2016

Utilizing wood wastes as reinforcement in wood cement composite bricks

Published Date
Received: 18 November 2014 - Revised: 01 December 2014 - Accepted: 14 December 2014
To cite this article: Sadiku, N.A., 2015. Utilizing wood wastes as reinforcement in wood cement composite bricks. Journal of the Faculty of Forestry Istanbul University 65(2): 31-37. DOI: 10.17099/jffiu.80051

Author
Nusirat Aderinsola Sadiku
879 296 

Abstract

Utilizing wood wastes as reinforcement in wood cement composite bricks
Abstract: This paper presents the research work undertaken to study the properties of Wood Cement Composite Bricks (WCCB) from different wood wastes and cement / wood content. The WCBBs with nominal density of 1200 kg m-3  were produced from three tropical wood species and at varying cement and wood content of 2:1, 2.5:1 and 3:1 on a weight to weight basis. The properties evaluated were compressive strength, Ultra Pulse Velocity (UPV), water absorption (WA) and thickness swelling (TS). The Compressive strength values ranged from 0.25 to 1.13 N mm-2 and UPV values ranged from 18753 to 49992 m s-1. The mean values of WA after 672 hours (28 days) of water soaking of the WCCBs ranged from 9.50% to 47.13% where there were no noticeable change in the TS of the bricks. The observed density (OD) ranged from 627 to 1159 kg m-3A. zygia from the three wood/cement content were more dimensionally stable and better in compressive strength than the other two species where T. scleroxylon had the best performance in terms of UPV. All the properties improved with increasing cement content. WCCBs at 3.0:1 cement/wood content are suitable for structural application such as panelling, ceiling and partitioning
Keywords: Tropical wood species, portland cement, composite bricks, UPV
Ahşap çimento kompozit tuğlalarında güçlendirici olarak ahşap atıklarının kullanılması 
Özet: Bu çalışma, farklı ahşap atıklarından ve çimento / ahşap içeriğinden elde edilen Ahşap Çimento Kompozit Tuğlaların (WCCB) özelliklerini incelemek üzere gerçekleştirilen araştırmayı temsil etmektedir. Üç tropik ağaç türünden ve ağırlık bazında 2:1, 2,5:1 ve 3:1 olmak üzere değişen çimento ve ahşap içeriğiyle 1200 kg m-3 nominal yoğunluğa sahip WCCB’ler üretilmiştir. Basınç dayanımı, ultra atım hızı  (UPV), su emilimi (WA) ve kalınlık şişmesi (TS) özellikleri değerlendirilmiştir. Basınç dayanımı değerleri 0,25 ila 1,13 N mm-2 arasında değişiklik gösterirken, UPV değerleri ise 18.753 ila 49.992 m s-1 arasında değişmiştir. WCCB’lerin 672 saat (28 gün) suya batırılmasının ardından elde edilen ortalama WA değerleri %9,50 ile %47,13 arasında değişiklik gösterirken, tuğlaların TS’sinde fark edilir bir değişiklik olmamıştır. Gözlemlenen yoğunluk (OD) 627 ila 1.159 kg m-3 arasında değişiklik göstermiştir. UPV açısından T. Scleroxylon’un en iyi performansı göstermiş olduğu diğer iki türe oranla, basınç dayanımı açısından üç adet ahşap/çimento içeriğinden elde edilen A. zygia ölçüsel olarak dengeli ve daha iyi olmuştur. Tüm özellikler, arttırılan çimento içeriği ile iyileştirilmiştir. 3,0:1 çimento / ahşap içeriğine sahip WCCB’ler panel, tavan ve bölümlere ayırma gibi yapısal uygulamalara uygundur. 
Anahtar kelimeler: Tropik ağaç türleri, portland çimentosu, kompozit tuğlalar, UPV
DOI: http://dx.doi.org/10.17099/jffiu.80051

References

Ajayi, B., 2004. Reaction of Cement-Bonded Composites from Gmelina arborea and Leucaena leucocephala to Water Treatment. Nig. J. For. 34(2): 125-131.
Ajayi, B., 2000. Strength and dimensional stability of cement-bonded flakeboard produced from Gmelina and Leucaena leucocephala. PhD thesis. Federal Univ. of Tech., Dept. of Forestry and Wood Tech., Akure, Nigeria, 176pp.
ASTM C 67-03, 2003. Standard test methods for sampling and testing brick and structural clay tile. Philadelphia, PA: American Society for Testing and Materials; 2003.
ASTM, 1998. Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials.
ASTM D 1037 – 96a. The American Society for Testing and Materials, Philadelphia, Annual Book of ASTM Standards, Vol. 04. 09 Wood.
Badejo, S.O.O., 1990. Sawmill wood residues and their utilization. Invited Paper presented at the National Forestry Workshop Management strategies for self sufficiency in Wood production held at Ibadan, June 1990
Badejo, S.O.O., 1987. An investigation on the influence of cement binder content on properties of cement-bonded particleboards from four Tropical Hardwood species.
BS 1881, 1997. Recommendations for measurement of pulse velocity through concrete. London: British Standards Institute; 1997 (Part 203).
Del Meneéis, C.H.S., de Castro, V.G., de Souza, M.R., 2007. Production and Properties of a Medium Density Wood-Cement Boards Produced with Oriented Strands and Silica Fume. Maderasz Cienciay Tecnología 9(2): 105-115.
Elinwa, A.U., Mahmood, Y.A., 2002. Ash from timber waste as cement replacement material. Cement and Concrete Composites 24(2): 219–222.
Erakhrumen, A.A., Areghan, S.E., Ogunleye, M.B., Larinde, S.L., Odeyale, O.O., 2008. Selected physico-mechanical properties of cement-bonded particleboard made from pine (Pinus caribaea M.) sawdust-coir (Cocos nucifera L.) mixture. Scientific Research and Essay 3(5): 197-203.
Galetakis, M., Raka, S., 2004. Utilization of limestone dust for artificial stone production: an experimental approach. Minerals Engineering 17: 355–357.
Gong, A., Kamdem, D.P., Harichandran, R., 1983. Compression tests on wood-cement particle composites made of CCA-treated wood removed from service.
Hachmi, M., Moslemi A.A., Campbell. A.G., 1990. A new technique to classify the compatibility of cement. Wood Science and Technology Journal 11: 14 - 19.
Li, G., Yu, Y., Zhao, Z., Li, J., Li, C., 2003. Properties study of cotton stalk fibre/ gypsum composite. Cement and Concrete Research 33(1): 43–46.
Manning, D., 2004. Exploitation and use of quarry fines. Report no. 087/ MIST2/DACM/01, 19 March 2004.
Olorunnisola, A.O., 2009. Effects of husk particle size and calcium chloride on strength and sorption properties of coconut husk–cement composites. Industrial Crops and Products 29(2-3): 495-501.
Oyagade, A.O., 1992. A Preliminary Investigation of the Influence of some Treatments on the Compressive Strength on Gmelina arborea Wood-Cement Composite. Nig. J. For. 22(1-2): 40-44.
Oyagade, A.O., 1995. Influence of Portland Cement Alkalinity on the Dimensional Stability of Cement-Wood Particleboard. Nig. J. For. 24(1-2): 21-25.
Savastano, H., Warden, P.G., Coutts, R.S.P., 2000. Brazilian waste fibres as reinforcement for cement-based composites. Cement Concrete Comp. 22: 379-384.
Simatupang, M.H., 1979. Water requirement for the production of Cement-Bonded Particleboard, Holz Roh-Werkst 37: 379-382
Soroushian, P., Plasencia, J., Ravanbakhsh, S., 2003. Assessment of reinforcing effect of recycled plastic and paper in concrete. ACI Materials Journal 100-M23(3): 203–207.
Stahl, D.C., Skavaczewski, G., Arena, P. Stempski. B., 2002. Lightweight concrete masonry with recycled wood aggregate. Journal of Materials in Civil Engineering 14: 116-121.
Udoeyo, F.F., Dashibil, P.U. 2002. Sawdust ash as concrete material. ASCE 14(2): 173–176.
Wolfe, R.W., Gjinolli, A., 1999. Composites And Manufactured Products: Durability And Strength Of Cement-Bonded Wood Particle Composites Made From Construction Waste. Forest Products Journal 49(2): 24-31.
Wei, Y.M., Tomita, B., 2000. Effects of five additive materials on mechanical and dimensional properties of wood cement-bonded boards. Journal of Wood Science 47: 437-444.
Zhou, Y., Kamdem, D.P., 2002. Effect of Cement/Wood Ratio on the Properties of Cement-Bonded Particleboard using CCA-Treated Wood Removed from Service. Forest Products Journal 52(2): 73-81.
Zziwa, A., Kizito, S., Banana, A.Y., Kaboggoza, J.R.S., Kambugu, R.K., Sseremba, O.E., 2006. Production of composite bricks from sawdust using Portland cement as a binder. Uganda Journal of Agricultural Sciences 12(1): 38-44.

For further details log on website :
http://dergipark.ulakbim.gov.tr/jffiu/article/view/5000078044

No comments:

Post a Comment