Journal of Polymers and the Environment
Jyh-Horng Wu
Chien-Wen Chen
M. C. Kuo Email author
Ming-Shien Yen
Kung-Yu Lee
Original Paper
First Online:
04 March 2017
DOI : 10.1007/s10924-017-0977-6
Cite this article as:
Wu, JH., Chen, CW., Kuo, M.C. et al. J Polym Environ (2017). doi:10.1007/s10924-017-0977-6
Abstract
A poly(lactic acid) (PLA)/polyamide 11 (PA11)/SiO2 composite was mixed from PLA, PA11, and nanosilica particles through twin-screw extrusion. The PLA/PA11/SiO2 composite was evaluated with tensile and Izod impact tests, light transmission and haze measurement, and isothermal and nonisothermal crystallization behavior determinations. The PLA/PA11/SiO2 (97.0/3.0) composite had approximately 10.8% less ultimate tensile strength than neat PLA, but it had greater ductility and approximately ninefold greater elongation at break. A dimple morphology was observed on the fractural surface of the PLA/PA11/SiO2 composite, indicating that the incorporation of PA11 and nanosilica particles increased the ductility of the PLA matrix. PLA with less than 3 wt% of PA11 and 0.5 phr of nanosilica particles had an Izod impact strength of 8.72 kJ/m2 . PA11 and nanosilica particles effectively toughened this PLA polymer; they accelerated both isothermal and nonisothermal crystallization rates and increased the crystallinities of the resulting composites under isothermal and nonisothermal crystallization processes.
Keywords
Poly(lactic acid) PA11 Nanosilica Toughening Isothermal crystallization Non-isothermal crystallization
References
1.
Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E (2003) Polymer 44:5701
CrossRef Google Scholar
2.
Anderson KS, Hillmyer MA (2004) Polymer 45:8809
CrossRef Google Scholar
3.
Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Comp Sci Technol 70:1742
CrossRef Google Scholar
4.
Wu JH, Wu CP, Kuo MC, Tsai Y (2016) J Environ Polym Degr 24:129
CrossRef Google Scholar
5.
Grijpma DW, Penning AJ (1994) Macromol Chem Phys 195:1649
CrossRef Google Scholar
6.
Hiljanen-Vainio M, Karjalainen T, Seppala J (1996) J Appl Polym Sci 59:1281
CrossRef Google Scholar
7.
Ruckenstein E, Yuan Y (1998) J Appl Polym Sci 69:1429
CrossRef Google Scholar
8.
Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) J Appl Polym Sci 66:1507
CrossRef Google Scholar
9.
Ljungberg N, Wesslen B (2003) Polymer 44:7679
CrossRef Google Scholar
10.
Jacobsen S, Fritz HG (1996) Polym Eng Sci 36:2799
CrossRef Google Scholar
11.
Jacobsen S, Fritz HG (1999) Polym Eng Sci 39:1303
CrossRef Google Scholar
12.
Anderson KS, Lim SH, Hillmyer MA (2003) J Appl Polym Sci 89:3757
CrossRef Google Scholar
13.
Wang Y, Hillmyer MA (2001) J Polym Sci Part A 39: 2755
CrossRef Google Scholar
14.
McCarthy SP, Ranganthan A, Ma W (1999) Macromol Symp 144:63
CrossRef Google Scholar
15.
Tsuji H, Ikada Y (2003) J Appl Polym Sci 60:2367
CrossRef Google Scholar
16.
Grijpma DW, Van Hofslot RDA, Super H, Nijenhuis AJ, Pennings AJ (1994) Polym Eng Sci 34:1674
CrossRef Google Scholar
17.
Wang L, Ma W, Gross RA, McCarthy SP (1998) Polym Degrad Stab 59:161
CrossRef Google Scholar
18.
Ruckenstein E, Yuan Y (1998) Polym Bull 40:485
CrossRef Google Scholar
19.
Bledzki AK, Jaszkiewicz A (2010) Compos Sci Technol 70:1687
CrossRef Google Scholar
20.
Wu JH, Kuo MC, Chen CW, Kuan PH, Wang YJ, Jhang SY (2013) J Appl Polym Sci 129:3007
CrossRef Google Scholar
21.
Wu JH, Yen MS, Kuo MC, Chen BH (2013) Mater Chem Phys 142:726
CrossRef Google Scholar
22.
Stoclet G, Seguela R, Lefebvre JM (2011) Polymer 52:1417
CrossRef Google Scholar
23.
Wan J, Li C, Fan H, Bu ZY, Li BG (2012) Thermochim Acta 544:99
CrossRef Google Scholar
24.
Ma YL, Hua GS, Rena XL, Wang BB (2007) Mater Sci Eng A 460–461:611
CrossRef Google Scholar
25.
Rabih R, Rachid R, Christian F, Sandrine H, Fernand P, Christian C (2008) Chem Eng Sci 15:3843
Google Scholar
26.
Patel R, Ruehle DA, Dorgan JR, Halley P, Martin D (2013) Polym Eng Sci doi:
10.1002/pen.23692 Google Scholar
27.
Lin Y, Chen H, Chan CM, Wu J (2010) Polymer 51:3277
CrossRef Google Scholar
28.
Kim SH, Ahn SH, Hirai T (2003) Polymer 44:5625
CrossRef Google Scholar
29.
Chung SC, Hahm WG, Im SS, Oh SG (2002) Macromol Res 10:221
CrossRef Google Scholar
30.
Ahn SH, Kim SH, Lee SG (2004) J Appl Polym Sci 94:812
CrossRef Google Scholar
31.
Michell RM, Müller AJ, Boschetti-de-Fierro A, Fierro D, Lison V, Raquez JM, Dubois P (2012) Polymer 53:5657
CrossRef Google Scholar
32.
Wu JH, Kuo MC, Chen CW (2015) J Appl Polym Sci. doi:
10.1002/APP.42378(1-9) Google Scholar
33.
Hul D (1981) An introduction to composite materials. Cambridge University Press, Cambridge, p 81
Google Scholar
34.
Callister Jr. WD (2003) Materaisl science and engineering an introduction, 6th edn. John Wiley & Sons Inc., New York
Google Scholar
35.
Eguiburu JL, Iruin JJ, Fernandez-Berridi MJ, San Román J (1998) Polymer 39:6891
CrossRef Google Scholar
36.
Arrighi V, McEwen IJ, Qian H, Serrano Prieto MB (2003) Polymer 44:6259
CrossRef Google Scholar
37.
Hilker B, Fields KB, Stern A, Space B, Zhang XP, Harmon JP (2010) Polymer 51:4790
CrossRef Google Scholar
38.
Liu S, Yu Y, Cui Y, Zhang H, Mo Z (1998) J Appl Polym Sci 70:2371
CrossRef Google Scholar
For further details log on website :
http://link.springer.com/article/10.1007/s10924-017-0977-6
No comments:
Post a Comment