Blog List

Friday, 3 June 2016

Development of cotton lap/cellulose pad substitute from jute

Published Date
Volume 18, Issue 3, pp 397-402
First online: 

Title 

Development of cotton lap/cellulose pad substitute from jute

  • Author 
  • Manisha Sharma 
  • B. Adhikari
  • Koel Choudhury


Abstract

Global market demand for hygiene absorbent products are increasing. Jute may be a better replacement of cotton fibres to manufacture cellulose laps used in disposable absorption products. Cellulose pads were developed using jute fibre and waste jute blended with Superabsorbent polymer(SAP). The waste jute was treated to increase its water absorbency. SAP was blended with treated jute and packed into disposable pads. Various water absorbency tests, MTT Assay, Soil burial test, Microbial evaluation tests were conducted which confirmed that Jute when blended with SAP can be used in making cellulose pads at a cheaper rates highly beneficial to the rural population.

Keywords

Jute fibre Super absorbent polymer Cellulose pads

References

  1. 1.
    Lokhande HT (1993) RV. Varadarajan, a new approach in the production of non-wood-based cellulosic superabsorbents through the pan graftıng method. Bioresour Technol 45:161–165CrossRef
  2. 2.
    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39:p1341–1348CrossRef
  3. 3.
    Kirstin K, Harald S, Jennifer L O, Edburga L K, Daniel S M, Geetha N E, Regulatory Toxicology and Pharmacology; 2009Volume 53, Issue 2, pp 81–89.


For further details log on website :
http://link.springer.com/article/10.1007%2Fs12588-014-9090-z

Sulfonated polysulfone/TiO2 nanocomposite membranes for fuel cell application

Published Date
Volume 15, Issue 1, pp 1-20
First online: 

Title 

Sulfonated polysulfone/TiO2nanocomposite membranes for fuel cell application

  • Author 
  • Lakshmi Unnikrishnan
  • Smita Mohanty
  • Sanjay K. Nayak 
  • Nijith P. Jayan

Abstract

In the present study, sulfonated polysulfone (SPSU)/titanium dioxide (TiO2) nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs) were synthesised and its utility as proton exchange membrane has been investigated. Polysulfone (PSU) was sulfonated with chlorosulfonic acid in 1,2 dichloroethane at ambient temperatures. The degree of sulfonation was determined by titration and 1H NMR was performed to verify the sulfonation reaction. FTIR spectra also showed the evidence of –SO3H absorption peak at ~1,027 cm−1. Sulfonation levels from 25 to 70% were easily achieved by varying reaction time. Nanocomposite membranes were prepared by blending TiO2 with SPSU solution in NMP employing solution casting technique. The membranes were characterized for thermal stability, water uptake, and proton conductivity measurements. The morphological characterisation of the membranes were carried out using SEM. X-ray diffraction measurements were also carried out to evaluate the interaction of TiO2 with SPSU. Conductivity values in the range of 10−4 S/cm were obtained for nanocomposite membranes.

Keywords

Membranes Differential scanning calorimetry (DSC) FTIR Thermogravimetric analysis (TGA) Nanocomposites WAXS

References

  1. 1.
    Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC (2009) Electrochim Acta 54:4111CrossRef
  2. 2.
    Pedicini R, Carbone A, Saccaa A, Gatto I, Marco GD, Passalacqua E (2008) Polym Test 27:248
  3. 3.
    Smitha B, Anjali Devi D, Sridhar SI (2008) J Hyd Ene 33:4138CrossRef
  4. 4.
    Yang Y, Zhang H, Wang P, Zheng Q, Li J (2007) J Memb Sci 288:231CrossRef
  5. 5.
    Sacc’a A, Carbone A, Passalacqua E, D’Epifanio A, Licoccia S, Traversa E (2005) J Pow Sou 152:16CrossRef
  6. 6.
    Silva VS, Schirmer J, Reissner R, Ruffmann B, Silva H, Mendes A (2005) J Pow Sou 140:41CrossRef
  7. 7.
    Jian-hua T, Peng-fei G, Zhi-yuan Z, Wen-hui L, Zhong-qiang S (2008) Intnl Ass Hydr Ene 33:5686CrossRef
  8. 8.
    Zhang ZH, Shen Z, Shao CS (1997) China Surf Deter Cosm 5:13
  9. 9.
    Mottet C, Revillion A, Perchec PL, Llauro MF, Guyot A (1982) Polym Bull 8:511CrossRef
  10. 10.
    Blanco JF, Nguyen Q, Schaetzel P (2002) J Appl Polym Sci 84:2461CrossRef
  11. 11.
    Fu Y-Z, Manthiram A (2006) J Pow Sou 157:222CrossRef
  12. 12.
    O’Gara JF, Williams DJ, Macnight WJ, Karasz FE (1987) J Polym Sci, Part B: Polym Phys 25:1519CrossRef
  13. 13.
    Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S (2000) J Memb Sci 173:17CrossRef
  14. 14.
    Kopitzke R, Linkous CA, Anderson HR, Nelson GL (2000) J Electrochem Soc 147:1677CrossRef
  15. 15.
    Guan R, Zou H, Lu D, Gong C, Liu Y (2005) Euro Polym Jnl 41:1554CrossRef
  16. 16.
    Gao Y, Robertson GP, Guiver MD, Jian X (2003) J Polym Sci Part A: Polym Chem 41:497CrossRef
  17. 17.
    Gao Y, Robertson GP, Guiver MD, Jian X, Mikhailenko SD, Wang K (2003) J Polym Sci Part A: Polym Chem 41:2731CrossRef
  18. 18.
    Devrima Y, Erkana S, Bac N, Eroglua I (2009) J Hydr Ene 34:3467CrossRef
  19. 19.
    Radeva I, Georgiev G, Sinigersky V, Slavcheva EI (2008) J Hydr Ene 33:4849CrossRef
  20. 20.
    Shan J, Vaivars G, Luo HZ, Mohamed R, Linkov V (2006) Pur Appl Chem 78:1781CrossRef
  21. 21.
    Amjadi M, Rowshanzamir S, Peighambardous SJ, Hosseini MG, Eikani MH (2010) Int J Hydr Ene 35:9252CrossRef
  22. 22.
    Lufrano F, Baglio V, Staiti P, Arico AS, Antonucci V (2008) J Pow Sou 179:34CrossRef
  23. 23.
    Jalani NH, Dunn K, Datta R (2005) Electrochim Acta 51:553CrossRef
  24. 24.
    Kim KS, Lee KH, Cho K (2002) J Memb Sci 135:1994


For further details log on website :
http://link.springer.com/article/10.1007%2Fs12588-011-9015-z

Morphology and thermo mechanical properties of pp/ps nanocomposites

Published Date
Volume 18, Issue 1, pp 125-134
First online: 

Title 
Morphology and thermo mechanical properties of pp/ps nanocomposites

Author 
  • Rodrigo P. da Silva 
  • César P. Neto

Abstract

The immiscible polypropylene (PP)/polystyrene (PS) blends and theirs organoclay 10A (Cloisite10A) nanocomposites with different contents were prepared via melt blending into a co-rotating twin screw extruder and the test samples were molded by injection molding. The 10A is an anisotropic layered silicate and the effect PP/PS ratio, 10A different content on melt and crystallization enthalpy were determined by DSC. The T g , storage modulus (E’), and tanδ measurements were obtained by DMA. The domains reduction of PS in the PP with addition 10A was investigated by Scanning Electronic Microscope (SEM). There is a decrease in PS particles size in PP/PS blends containing 10A. The crystallinity degree of PP seems to reduction with the addition of PS phase and 10A. The E’ of the PP/PS 90/10/0 blends showed slightly changes between Neat PP and PP/PS/10A nonetheless the nanocomposites 3 and 5 %wt had a small rise in the storage modulus between −50 and 0 °C.

Keywords

Polypropylene Polystyrene Organoclay Blends

References

  1. 1.
    Asha KK, Tresa SG, Anjana R, Newly J, Georg KE (2013) Effect of modified kaolin clays on the mechanical properties of polypropylene/polystyrene blends. J Appl Polym Sci. doi:10.​1002/​APP.​38043
  2. 2.
    Utracki LA (1989) Poymer Alloys and Blends. Thermodynamics and Rheology, New York
  3. 3.
    Yoshida K, Kawamura T, Terano M, Nitta K (2008) Effects of bulk morphology on the mechanical properties of melt-blended PP/PS blends. J A Pol Sci. doi:10.​1002/​app.​28014
  4. 4.
    Yuan HY, Ching YL, Jui MY, Wei HL (2003) Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materials. Polymer. doi:10.​1016/​S0032–3861(03)00062–4
  5. 5.
    Silva RP, Salles CA, Mauler RS, Oliveira RVB (2010) Avaliação da morfologia e propriedades termo-mecânicas em nanocompósitos de PVC. Pol Cien Tecn. doi:10.​1590/​S0104–1428201000500001​2
  6. 6.
    Silva RP, Salles CA, Mauler RS, Oliveira RVB (2010) Investigation of the thermal, mechanical and morphological properties of poly(vinyl chloride)/polyhedral oligomeric silsesquioxane nanocomposites. Pol Int. doi:10.​1002/​pi.​2851
  7. 7.
    Zhu Y, Xu Y, Tong L, Xu Z, Fang Z (2008) Influence of polarity on the preferential intercalation behavior of clay in immiscible polypropylene/polystyrene blend. J A Pol Sci. doi:10.​1002/​app.​28927
  8. 8.
    Suprakas SR, Steve P, Mosto B, Leszek U (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer. doi:10.​1016/​j.​polymer.​2004.​10.​009
  9. 9.
    Yurekli K, Karim A, Amis EJ, Krishnamoorti R (2003) Influence of layered silicates on the phase-separated morphology of PS − PVME blends. Macromol. doi:10.​1021/​ma020755l
  10. 10.
    Zhu Y, Ma H, Tong L, Fang Z (2008) Preferential intercalation behavior of clay and its effect on the thermal degradation in immiscible PP/PS blends. C J Pol Sci. doi:10.​1142/​S025676790800354​0
  11. 11.
    Yong W, Yan X, Qin Z, Xiao LG, Qiang F (2003) The morphology and mechanical properties of dynamic packing injection molded PP/PS blends. Polymer. doi:10.​1016/​S0032–3861(03)00011–9
  12. 12.
    Wang Y, Zhang Q, Fu Q (2003) Compatibilization of immiscible poly(propylene)/polystyrene blends using clay. Macromol Rap Com. doi:10.​1002/​marc.​200390026
  13. 13.
    Yan Z, Yuzhen X, Lifang T, Zhongbin X, Zhengping F (2008) Influence of polarity on the preferential intercalation behavior of clay in immiscible polypropylene/polystyrene blend. J Appl Polym Sci. doi:10.​1002/​app.​28927
  14. 14.
    Ray S, Suprakas P, Steve BM (2004) Role of organically modified layered silicate as an active interfacial modifier in immiscible polystyrene/polypropylene blends. Polymer. doi:10.​1016/​j.​polymer.​2004.​10.​009
  15. 15.
    Rajkiran RT, Paul DR (2011) Effect of organoclay on the morphology, phase stability and mechanical properties of polypropylene/polystyrene blends. Polymer. doi:10.​1016/​j.​polymer.​2011.​01.​019
  16. 16.
    Huang H, Han B, Wang L, Miao N, Mo H, Zhou NL, Ma ZM, Zhang J, Shen J (2011) Crystallization kinetics of polypropylene composites filled with nano calcium carbonate modified with maleic anhydride. J Appl Polym Sci. doi:10.​1002/​app.​32842
  17. 17.
    Gao J, Fu X, Ding M, Fu Q (2010) Studies on partial compatibility of PP and PS. C J Pol Sci. doi:10.​1007/​s10118–010–9150–6
  18. 18.
    Zhang YQ, Lee JH, Rhee JM, Rhee KY (2004) Polypropylene–clay nanocomposites prepared by in situ grafting-intercalating in melt. Comp Sci Tech. doi:10.​1016/​j.​compscitech.​2003.​10.​014
  19. 19.
    Amash A, Zugenmaier P (1997) Thermal and dynamic mechanical investigations on fiber-reinforced polypropylene composites. J Appl Polym Sci. doi:10.​1002/​(SICI)1097–4628
  20. 20.
    Prasanna KS, Mural SM, Sanjay KNSA (2011) Polypropylene/high impact polystyrene blend nanocomposites obtained from E-waste: evaluation of mechanical, thermal and morphological properties. Int J Plast Technol. doi:10.​1007/​s12588–011–9005–1
  21. 21.
    Halimatudahliana A, Ismail H, Nasir A (2002) Morphological studies of uncompatibilized and compatibilized polystyrene/polypropylene blend. Pol Test. doi:10.​1016/​S0142–9418(01)00079–4
  22. 22.
    Santos KS (2011) Efeito das Condições de Processo sobre morfologia de Nanocompositos de Polipropileno com argila organofílica. UFRGS, Tese de Doutorado
  23. 23.
    Jia QM, Zheng M, Zhu YC, Li JB, Xu CZ (2007) Effects of organophilic montmorillonite on hydrogen bonding, free volume and glass transition temperature of epoxy resin/polyurethane interpenetrating polymer networks. Europ Pol J. doi:10.​1016/​j.​eurpolymj.​2006.​10.​016
  24. 24.
    Liv Y, Huang Y, Kong M, Li G (2013) Improved thermal oxidation stability of polypropylene films in the presence of β-nucleating agent. Pol Test. doi:10.​1016/​j.​polymertesting.​2012.​10.​008
  25. 25.
    Santos K, Demori R, Mauler RS, Liberman SA, Oviedo MAS (2009) The influence of screw configurations and feed mode on the dispersion of organoclay on PP. Comp Part A: App Sci Man. doi:10.​1016/​j.​compositesa.​2009.​05.​009
  26. 26.
    Thirtha V, Lehman R, Nosker T (2006) Morphological effects on glass transition behavior in selected immiscible blends of amorphous and semicrystalline polymers. Polymer. doi:10.​1016/​j.​polymer.​ 2006.​05.​014
  27. 27.
    Macaúbas PHP, Demarquette N (2001) Morphology development and melt linear viscoelastic properties of (PA6/PP/PS) ternary blend systems. Polymer. doi:10.​1177/​0095244309104461​
  28. 28.
    Asha KK, Tresa SG, Anjana R, Newly J, George KE (2013) Effect of modified kaolin clays on the mechanical properties of polypropylene/polystyrene blends. J Appl Polym Sci. doi:10.​1002/​app.​38043
  29. 29.
    Aklonis JJ, Macknight WJ (1983) Introduction to Polymer Viscoelasticity, 2nd edn. Wiley, New York, pp 295–320
  30. 30.
    Menard KP (1999) Dynamic Mechanical Analysis. A practical Introduction CRC Press, New YorkCrossRef
  31. 31.
    Sperling LH (2006) Introduction to Physical Polymer Science. Bethlehem, Pennsylvania


For further details log on website :
http://link.springer.com/article/10.1007%2Fs12588-014-9069-9

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...