Blog List

Monday, 12 December 2016

Development of New Product: Rambutan Pulpy Juice

Published Date
2015, Vol.3:413425doi:10.1016/j.profoo.2015.01.046
The First International Symposium on Food and Agro-biodiversity Conducted by Indonesian Food Technologists Community
Open Access, Creative Commons license

Author 

  • Ermi Sukasih ,
  •  
  • Setyadjit
  • Indonesian Centre for Agriculture Postharvest Research and Development Cimanggu Agriculture Campus, Jl. Tentara Pelajar no. 12, Bogor 16114, Indonesia


Abstract

This study aimed to know the effect of adding pulp in rambutan fruit juice on the characteristics of rambutan juice during storage. Research using the CRD, the treatment were kind of pulp (mandarin and rambutan) and pulp concentration (5%, 7.5%, and 10%). The results showed that the addition of pulp significantly affect the characteristics of rambutan juice (pH, vitamin C, total acid) during storage. Pulpy juice with the most prefered was addition of rambutan pulp as much as 7.5% (w/v) and the addition of citrus pulp as much as 7.5% (w/v) with the score of 3-4 (moderate like - like).

Keywords


  • pulpy juice
  • rambutan
  • citrus 
  • storage



  • References

      • [1]
      • Marisa, 2006. Ascorbic acid and mineral composition of longan (Dimocarpus longan), lychee (Litchi chinensis) and rambutan (Nephelium lappaceum) cultivars grown in Hawaii. Journal of Food Composition & Analysis, 19 (2006), pp. 655-663.
      • [2]
      • Ong,P.K.C, Acree,T.E. and E.H. Lavin. 1998. Characterization of Volatiles in Rambutan Fruit (Nephelium lappaceum L.). Journal of Agricultural Food Chemistry, 46 (1998), pp. 611-615.
      • [3]
      • Harry. 2008. “Minute Maid Pulpy Orange”, Welcomes the Eid holidays. [connect periodically]. http://www.wisatanet.com/templete/index.php (14 October 2011).
      • [4]
      • Will RHH, Lee TH, Graham D, Mc Glasson WB, Hall EG. 1961. An Introduction to the Postharvest Physiology and Handling of Fruits and Vegetables. Hongkong: South China Printing Co.
      • [5]
      • Gomez JA, Tarrega A, Bayarri S, Carbonell JV. 2009. Clarification and gelation of a minimally heated orange juice concentrate during its refrigerated strorage. Journal of Food Process Engineering.
      • [6]
      • Purnomo. 2002 Use of Measurements for Predicting Yield of Real Brix in sugar factory Sugar White Mataram, Lampung. Lampung: R & D Division, White Sugar Sugar Factory Mataram.
      • [7]
      • Pantastico E.B. 1986 Physiology of Post Harvest Handling and Use of Fruits and Vegetables Tropical and Subtropical. (in Bahasa Indonesia). Yogyakarta: Gadjah Mada University Press.
      • [8]
      • Kempler C, Kabaluk J.T, Toivonen PMA. 1992. Effect of environment and harvest date on maturation and ripening of kiwi fruit in British Columbia. Can. J. Plant Sci.72:863-869.
      • [9]
      • Islam M.S, Matsui T, Yoshida Y. 1996. Carbohydrate content and the activities of sucrose synthase, sucrose phosphate synthase and acid invertase in different tomato cultivars during fruit development. Sci. Hort. 65 : 125-136.
      • [10]
      • Irving DE, Hurst PL, Ragg JS. 1997. Changes carbohydrate and metabolizing enzymes during the development, maturation, and ripening of buttercup squash (Cucurbita maxima D. ‘Delica’). J. Amer. Soc. Hort. Sci. 122:310-314.
      • [11]
      • Kimball DA. 1999. Citrus Processing A Complete Guide Second Edition. Maryland: Aspen Publisher.
      • [12]
      • Susanto S, Mahardika IBK, Aryani. 2009 Big Citrus Fruit Quality Changes (Citrus grandis L. Osbeck) ‘Bali Red’ During Ripening and Storage Period. Denpasar: Denpasar Warmadewa University.
      • [13]
      • Janick, J. 2010. Rambutan. Horticultural Review . John Wiley and Sons Inc. USA (16):185.
      • [14]
      • Harjadi W. 1992 Basic Analytical Chemistry. Jakarta: Gramedia.
      • [15]
      • Kusuma, H.R, Indraswati, N and Martina. 2007 Effect of Pasteurization on the Quality of Orange Juice Pacitan. Widya Engineering 6 (2): 142-151.
      • [16]
      • Davidek,J.,J. Velisek, J. Pokorny.1990. Chemichal Changes During Food Processing. Elsevier.Amsterdam.
      • [17]
      • Pancoast,H.M. dan W. Ray.Junk.1980.Hand Book of Sugar Second Edition.The AVI Publishing Company Inc.Westport.Connecticut.

    • Peer-review under responsibility of the organizing committee of Indonesian Food Technologist Community.
    • ⁎ 
      Corresponding author.
    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S2211601X15000474

    How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model

    Published Date
    May 2016, Vol.57:8393, doi:10.1016/j.rser.2015.12.096

  • Author 
  • Muhammad Shahbaz a,
  • Nanthakumar Loganathan b,
  • Ahmed Taneem Muzaffar c,d,
  • Khalid Ahmed e,,
  • Muhammad Ali Jabran f,

  • aEnergy Research Centre, COMSATS Institute of Information Technology, Lahore Campus, Pakistan
    bFaculty of Economics and Business Management, Universiti Sultan ZainalAbidin, 21300 Kuala Terengganu, Terengganu, Malaysia
    cSchool of Business, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
    dSchool of Business, University of Notre Dame, Australia
    eSukkur Institute of Business Administration (Sukkur-IBA), Airport Road, Sukkur 65200, Pakistan
    fDepartment of Management Sciences, COMSATS Institute of Information Technology, Lahore, Pakistan

    Received 28 May 2015. Revised 23 September 2015. Accepted 17 December 2015. Available online 4 January 2016. 

    Abstract

    We investigate the impact of urbanization on CO2 emissions by applying the Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) in the case of Malaysia over the period of 1970Q1–2011Q4. Empirically, after testing the integrating properties of the variables using the unit root test, we applied the Bayer–Hanck combined cointegration approach to examine the cointegration relationship between the variables. Further, we tested the robustness of the long-run relationship in the presence of structural breaks using ARDL bounds testing approach. The causal relationship between the variables is investigated by applying the VECM Granger causality test. Our results validate the existence of cointegration in the presence of structural breaks. The empirical results exposed that economic growth is a major contributor to CO2 emissions. Besides, energy consumption raises emissions intensity and capital stock boosts energy consumption. Trade openness leads affluence and hence increases CO2 emissions. More importantly, we find that the relationship between urbanization and CO2 emissions is U-shaped i.e. urbanization initially reduces CO2 emissions, but after a threshold level, it increases CO2 emissions. The causality analysis suggests that the urbanization Granger causes CO2 emissions.

    Keywords

  • Urbanization
  • Energy
  • Malaysia

  • Fig. 1.
     Table 1
    Table 1.
     Table 2
    Table 2.
     Table 3
    Table 3.
     Table 4
    Table 4.
     Table 5
    Table 5.
     Table 6
    Table 6.
    Fig. 2.
    Fig. 3.
     Table 7
    Table 7.
     Table 8
    Table 8.
    • ⁎ 
      Corresponding author.


    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S1364032115014793

    Influence of local climate and ENSO on the growth of Abarco (Cariniana pyriformis) in Chocó, Colombia

    Published Date
    Volume 29, Issue 1pp 97–107

    Original Paper
    DOI: 10.1007/s00468-014-1094-y


    Cite this article as: 
    Moreno, M.M. & del Valle, J.I. Trees (2015) 29: 97. doi:10.1007/s00468-014-1094-y


    Author 
    • Miyer M. Moreno
    • Jorge I. del Valle
    Abstract

    Key message

    The tropical treeCariniana pyriformisthat grows in the rainforest of the Colombian Darien Gap has annual rings sensitive to precipitation and to ENSO and dual porosity: diffuse, and semi-ring-porous.

    Abstract

    We conducted a dendrochronological study of the species Cariniana pyriformis (Abarco), which grows in the tropical rainforests of the Colombian Pacific. We used cross sections of 13 trees, from which we measured the widths of the rings of 33 series using standard dendrochronological procedures. We found that this species has distinct annual rings and dual porosity: diffuse and semi-ring-porous. The average correlation between the individual series and the mean chronology (mean intercorrelation) was 0.49 (P = 0.01). The calculated residual chronology is reliable according to several different indices (expressed population signal = 0.92; common signal percentage = 92 %; signal-to-noise ratio = 11.52; mean sensitivity = 0.22). The chronology was insensitive to the annual and monthly mean temperatures. However, the residual chronology was positively correlated with the annual rainfall (r = 0.33, P = 0.046) and the monthly rainfall from May (r = 0.34, P = 0.039) and September (r = 0.32, P = 0.054) as well as the annual (r = 0.34, P = 0.004) SOI (Southern Oscillation Index) and the monthly SOI values during January, March, April, October and November (r between 0.28 and 0.32, P between 0.012 and 0.032). Using the MEI (Multivariate ENSO Index) and ONI (Oceanic El Niño Index) indices, we also found significant correlations, though these were negative trends (r = −0.38, P = 0.0019 and r = −0.35, P = 0.0042, respectively); both indices exhibited better monthly correlations during the first 5 months of the year (r ≥ −0.33, P ≤ 0.01).
    References

    1. Allison I, Bindorf NL, Bindschadler RA et al (2009) The Copenhagen diagnosis: updating the world on the latest climatic science. Climate Change Research Centre (CCRC), SydneyGoogle Scholar
    2. Arévalo RL, Londoño A (2005) Manual para la identificación de maderas que se comercializan en el departamento del Tolima. Corporación Autónoma Regional del Tolima, IbaguéGoogle Scholar
    3. Azambuja D (1962) Algumas considerações sobre as técnicas mais empregadas na anatomia das madeiras. Anuário Brasileiro de Economia Florestal. Rio de Janeiro 14(14):1802–1812Google Scholar
    4. Blasing TJ, Solomon AM, Duvick DN (1984) Response functions revisited. Tree-Ring bull 44:1–15Google Scholar
    5. Boura A, De Franceschi D (2007) Is porous wood structure exclusive of deciduous trees? CR Palevol 6(6–7):385–391CrossRefGoogle Scholar
    6. Brienen R, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecología. doi:10.1007/s004420050160PubMedGoogle Scholar
    7. Callejas LL (2003) Anillos de crecimiento en especies forestales de Santa Cruz, Bolivia. Disertación, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia
    8. Campos LE (2009) Dendrocronología en arboles de tornillo (Cedrelinga catenaefoirmisDucke) Fabaceae, del Centro de Investigaciones Jenaro Herrera en el noreste de la Amazonía, Perú. Disertación, Universidad Nacional Agraria La Molina, Lima
    9. Cárdenas D, Salinas NR (eds) (2006) Libro rojo de plantas de Colombia. Especies maderables amenazadas. Instituto de Investigaciones Amazónicas (SINCHI), BogotáGoogle Scholar
    10. Centre Technique Forestier Tropical- CTFT- (1967) Fiches botaniques, forestières, industrielles et commerciales: abarco. Bois For Trop 114:39–42Google Scholar
    11. Clark DA (2004) Sources or sinks?: the responses of tropical forests to current and future climate and atmospheric composition. Phil Trans R Soc Lond B. doi:10.1098/rstb20031426Google Scholar
    12. Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rainforest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proc Natl Acad Sci USA. doi:10.1073/pnas0935903100Google Scholar
    13. Clark DB, Clark DA, Oberbauer SO (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Chang Biol 16(2):747–759CrossRefGoogle Scholar
    14. Cook ER, Holmes RL (1986) Guide for computer program ARSTAN. In: Grissino-Mayer HD, Holmes RL, Fritts HC (eds) Laboratory of Tree-Ring research. University of Arizona, TucsonGoogle Scholar
    15. Cook ER, Kairukstis LA (1992) Methods of dendrochronology: applications in the environmental sciences. Kluwer, DordrechtGoogle Scholar
    16. Couralet C, Sterck FJ, Sass-Klaassen U, Van Acker J, Beeckman H (2010) Species-specific growth responses to climate variations in understory trees of a central African rainforest. Biotropica 42:503–511CrossRefGoogle Scholar
    17. da Silva RP, dos Santos J, Tribuzy ES, Chambers JQ, Nakamura S, Higuchi N (2002) Diameter increment and growth pattern for individual tree growing in Central Amazon, Brazil. Forest Ecol Manag 166:295–301CrossRefGoogle Scholar
    18. Davidson EA, Artaxo P (2004) Globally significant changes in biological processes of the Amazon basin: results of large-scale biosphere-atmosphere experiment. Glob Change Biol 10:519–529CrossRefGoogle Scholar
    19. Enquist BJ, Leffler AJ (2001) Long-term tree ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climate variation. J Trop Ecol 17:41–60CrossRefGoogle Scholar
    20. Feeley KJ, Wright SJ, Supardi MNN, Kassim AR, Davies SJ (2007) Decelerating growth in tropical forest trees. Ecol Lett 10:461–469PubMedCrossRefGoogle Scholar
    21. Ferreira T, Rasband W (2011) ImageJ user guide IJ 1.45 m. http://rsb.info.nih.gov/ij/docs/index.html. Accesed 6 Aug 2011
    22. Fichtler E, Worbes M (2012) Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA J 33:119–140Google Scholar
    23. Fichtler E, Clark DA, Worbes M (2003) Age and long-term growth of trees in an old-growth tropical rain forest based on analyses of tree rings and 14C. Biotropica 35(3):306–317CrossRefGoogle Scholar
    24. Fichtler E, Trouet V, Beeckman H, Coppin P, Worbes M (2004) Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees 18:442–451CrossRefGoogle Scholar
    25. Fritts HC (1976) Tree rings and climate. Academic Press, New YorkGoogle Scholar
    26. Fritts HC, Swetnam TW (1989) Dendroecology: a tool for evaluating variations in past and present forest environments. Adv Ecol Res 19:111–187CrossRefGoogle Scholar
    27. Gerry E (1952) Abarco, bacu: Cariniana pyriformis Miers, family: Lecythidaceae. Madison, Wis.: US Department Agriculture, Forest Service, Forest Products Laboratory, Washington
    28. Giménez A (1993) Rasgos estructurales característicos del xilema secundario de las principales especies arbóreas de la región chaqueña seca. Quebracho 1:5–14Google Scholar
    29. Giraldo JA, Giraldo V, Del Valle JI (2012) El clima y la actividad solar leídos en los anillos de crecimiento de Albizia niopoides. Cambium 9(1):1–5Google Scholar
    30. Gómez ML (2010) Fenología reproductiva de especies forestales nativas presentes en la jurisdicción de CORANTIOQUIA, un paso hacia su conservación. Corporación Autónoma Regional del Centro de Antioquia (CORANTIOQUIA), Medellín
    31. Grissino-Mayer HD (2001) Research report evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57(2):205–221Google Scholar
    32. Herrera DA, Del Valle JI (2011) Reconstrucción de los niveles del río Atrato con anillos de crecimiento de Prioria copaifera. Dyna 78(169):121–130Google Scholar
    33. Holmes RL (1983) Research report computer—assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43:69–78Google Scholar
    34. Hua Q, Barbetti M, Zoppi U, Chapman DM, Thomson B (2003) Bomb radiocarbon in tree rings from northern South Wales, Australia: implications for dendrochronology, atmospheric transport, and air-sea exchange of CO2. Radiocarbon 45(3):431–447Google Scholar
    35. Körner Ch, Morgan J, Norby N (2007) CO2 Fertilization: When, where, how much? In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystem in a changing world series. Springer, Berlin, pp 9–21CrossRefGoogle Scholar
    36. Kribs D (1959) Commercial foreign woods on the American market. Dover Publications, New YorkGoogle Scholar
    37. Lisi CS, Tomazello Fo M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J 29(2):189–207CrossRefGoogle Scholar
    38. López L (2011) Una aproximación dendrocronológica a la ecología y el manejo de los bosques tropicales secos del cerrado boliviano. Disertación, Universidad Nacional de Comahue, San Carlos de Bariloche
    39. McPhaden MJ (2003) El Niño and La Niña: causes and global consequences. In: Munn T (ed) Encyclopedia of Global Environmental Sciences. 353, 370Google Scholar
    40. Nocetti M, Rozenberg P, Chaix G, Macchioni N (2011) Provenance effects on the ring structure of teak (Tectona grandis L.f.) wood by X-ray microdensitometry. Ann For Sci 68:1375–1383CrossRefGoogle Scholar
    41. Organización Mundial de la Salud, Subcomité de Planificación y Programación del Comité Ejecutivo (1998) Cambio climático y enfermedades infecciosas: consecuencias del fenómeno El Niño. SPP30/5 (Esp.). Organización Mundial de la Salud, Nueva York
    42. Poveda G, Mesa OJ (1999) La corriente de chorro superficial del oeste (del CHOCO) y otras dos corrientes de chorro atmosféricas sobre Colombia: climatología y variabilidad durante las fases de ENSO. Rev Acad Colomb Cienc 23(89):514–528Google Scholar
    43. Poveda G, Mesa OJ (2000) On the existence of Lloró (The rainiest locality on Earth): enhanced Ocean-land-atmosphere interaction by a low level jet. Geophys Res Lett 27(11):1675167–1675168CrossRefGoogle Scholar
    44. Priya PB, Bhat KM (1999) Influence of rainfall, irrigation and age on the growth periodicity and wood structure in teak (Tectona grandis). IAWA J 20:181–192CrossRefGoogle Scholar
    45. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
    46. Ramírez JA, Del Valle JI (2011) Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev Biol Trop 59(3):1389–1405PubMedGoogle Scholar
    47. Reimer PJ, Brown TA, Reimer RW (2004) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304Google Scholar
    48. Rigozo N, Lisi CS, Tomazello FoM, Prestes A, Nordemann DJ, Pereira de Souza EM, Echer E, da Silva HE, Rigozo VF (2012) Solar-terrestrial signal records in tree-ring width time series from Brazil. Pure appl Geophys 169(12):2181–2191CrossRefGoogle Scholar
    49. Rosero J (2009) Dendrocronología de árboles de mogno, (Swietenia macrophylla King.), Meliaceae, presentes en un bosque Amazónico tropical, Madre de Dios, Perú. Disertación, Universidade de São Paulo, Piracicaba
    50. Sarabia D (1994) Descripción y caracterización anatómica de cuatro especies de la familia Lecythidaceae. Disertación, Universidad Nacional de Colombia sede Medellín, Colombia
    51. Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Huttermann A, Worbes M (2004) Teleconection between tree growth in the Amazonian floodplanis and the El Niño-Southern Oscillation effect. Glob Change Biol 10:683–692CrossRefGoogle Scholar
    52. Schöngart J, Wittmann F, Worbes M (2010) Biomass and net primary production of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schongart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Verlag, pp 347–388CrossRefGoogle Scholar
    53. Schweingruber F (1988) Tree Rings. Basics and applications of dendrochronology. In D Reidel (ed) Dordrecht, The Nethenerland
    54. Speer JH (2010) Fundamentals of tree-ring research. The Universty of Arizona Press, TucsonGoogle Scholar
    55. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
    56. Sudworth GB, Mell CD (1911) “Colomnian Mahogany” (Cariniana pyriformis) Its characteristic and its use as a substitute for true Mahogany. Department Agriculture, Forest Service, WashingtonCrossRefGoogle Scholar
    57. Tian H, Melillo JM, Kicklighter DW (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667CrossRefGoogle Scholar
    58. Tomazello Fo M, Lisi CS, Hansen N, Cury G (2004) Anatomical features of increment zones in different tree species in the State of São Paulo, Brazil. Scientia Forestalis 66:46–55Google Scholar
    59. Vásquez AM, Ramírez AM (2005) Maderas comerciales en el Valle de Aburrá. Área Metropolitana del Valle de Aburra, MedellínGoogle Scholar
    60. Walter H, Lieth H (1967) Klimadiagramm-Weltatlas. Gustav Fischer, JenaGoogle Scholar
    61. Wheeler EA, Baas P, Gasson PE (eds) (1989) IAWA list of microscopic features for hardwood identification: with an appendix on non-anatomical information. IAWA Bull 10(3): 219–332
    62. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403CrossRefGoogle Scholar
    63. Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schongart J, Parolin P (eds) Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Springer, Berlin, pp 329–346CrossRefGoogle Scholar
    64. Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70(2):503–507CrossRefGoogle Scholar
    65. Worbes M, Junk WJ (1999) How old are tropical trees? the persistence of a myth. IAWA J 20(3):255–260CrossRefGoogle Scholar
    66. Worbes M, Blanchart S, Fichtler E (2013) Relations between water balance, wood traits, and phenological behavior of tree species from a tropical dry forest in Costa Rica: a multifactorial study. Tree Physiol 33:527–536PubMedCrossRefGoogle Scholar
    67. XLSTAT (2011) Addinsoft, NY, USA. online at: http://www.xlstat.com. Accessed 10 Jan 2012)
    68. Yumi C (2012) Estimativa do crescimento e acumulo de biomassa em espécies arbóreas, como subsidio a projetos de restauração da Mata Atlântica. Dissertação, Universidade Federal do Paraná, Curitiba
    69. Zang C, Biondi F (2012) Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31(1):68–74CrossRefGoogle Scholar

    For further details log on website :
    http://link.springer.com/article/10.1007%2Fs00468-014-1094-y

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...