- [1]
L.K. Adams, D.Y. Lyon, P.J.J. AlvarezComparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions
Water Research, 40 (2006), pp. 3527-3532
- [2]
C. Ales Pana, K. Milan, V. Renata, P. Robert, S. Jana, K. Vladimir, H. Petr, Z. Radek, K. LiborAntifungal activity of silver nanoparticles against Candida spp.
Biomaterials, 30 (2009), pp. 6333-6340
- [3]
B. Ankamwar, D. Chinmay, A. Absar, S. MuraliBiosynthesis of gold and silver nanoparticles using emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution
Journal of Nanoscience and Nanotechnology, 10 (2005), pp. 1665-1671
- [4]
B. Ankamwar, M. ChaudharyGold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing
Synthesis and Reactivity in Inorganic and Metal–Organic Chemistry, 35 (2005), pp. 19-26
- [5]
N.A. Amro, L.P. Kotra, K.W. Mesthrige, A. Bulychev, S. Mobashery, G. Liu GHigh-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability
Langmuir, 16 (2000), pp. 2789-2796
- [6]
- P. Baglioni, L. Dei, L. Fratoni, P. Lo Nostro, M. Moroni, Preparation of nano and micro-particles of group II and transition metals oxides and hydroxides and their use in the ceramic, textile and paper industries, Patent. 8 (2003) pp. 827–842.
- [7]
R. Brayner, R. Ferrari-Illiou, N. Briviois, S. Djediat, M.F. Benedetti, F. FievetToxicol-ogical impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium
Nano Letters, 6 (2006), pp. 866-870
- [8]
M. CheesbroughDistrict Laboratory Practice in Tropical Countries. Low Price Edition
The press syndicate of the University of Cambridge, Trumpington Street Cambridge (2000)
- [9]
P. Dibrov, J. Dzioba, K.K. Gosink, C.C. HaseMechanism of Antimicrobial Activity of Ag+ in Vibrio cholerae
Antimicrobial Agents and Chemotherapy, 46 (2002), pp. 2668-2670
- [10]
J. Doménech, A. PrietoStability of zinc oxide particles in aqueous suspensions under UV illumination
Journal of Physical Chemistry, 90 (1986), pp. 123-1126
- [11]
I. Dragieva, S. Stoeva, P. Stoimenov, E. Pavlikianov, K. KlabundeComplex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process
Nanostructured Materials, 12 (1999), pp. 267-270
- [12]
N. Duran, P.D. Marcato, O.L. Alves, G. SouzaMechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains
Journal of Nanotechnology, 3 (2005), pp. 1-7
- [13]
N. Dura´n, P.D. Marcato, G.I.H. De Souza, O.L. Alves, E. EspositoAntibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment
Journal of Biomedical Nanotechnology, 3 (2007), pp. 203-208
- [14]
M. Fang, J.H. Chen, X.L. Xu, P.H. Yang, H.F. HildebrandAntibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests
International Journal of Antimicrobial Agents, 27 (2006), pp. 513-517
- [15]
B. Fei, Z. Deng, J.H. Xin, Y. Zhang, G. PangRoom temperature synthesis of nanorods and their applications on cloth
Nanotechnology, 17 (2006), pp. 1927-1931
- [16]
G. Fu, P.S. Vary, C. LinAnatase TiO2 nanocomposites for antimicrobial coatings
Journal of Physical Chemistry B, 109 (2005), pp. 8889-8898
- [17]
J.L. Gardea-Torresdey, J.G. Parsons, E. Gomez, J. Peralta-VideaFormation and growth of Au nanoparticles inside live alfalfa plants
Nanoletters, 2 (2002), pp. 397-401
- [18]
J.L. Gardea-Torresdey, E. Gomez Jr., Peralta-Videa Jr, J.G. Parsons, H. Troiani, M. Jose-YacamanAlfalfa Sprouts: A Natural Source for the Synthesis of Silver Nanoparticles
Langmuir, 19 (2003), pp. 1357-1361
- [19]
A.K. Gupta, M. GuptaCytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles
Biomaterials, 26 (2005), pp. 1565-1573
- [20]
S.M. Hammond, P.A. LambertAntimicrobial Actions
Edward Arnld Ltd, London (1978)
- [21]
T. Hamouda, A. Myc, B. Donovan, A.Y. Shih, J.D. Reuter, J.R. BakerA novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi
Research in Microbiology, 156 (2001), pp. 1-7
- [22]
J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. YangBiosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf
Nanotechnology, 18 (2007), pp. 105104-105114
- [23]
A. Ingle, A. Gade, S. Pierrat, C. Sönnichsen, M. RaiMycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria
Current Nanoscience, 4 (2008), pp. 141-144
- [24]
D. Jain, H.K. Daima, S. Kachhwaha, S.L. KothariSynthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities
Digest Journal of Nanomaterials and Biostructures, 4 (2009), pp. 557-563
- [25]
N. Jones, B. Ray, K.T. Ranjit, A.C. MannaAntibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms
FEMS Microbiology Letters, 279 (2008), pp. 71-76
- [26]
N. Khandelwal, A. Singh, D. Jain, M.K. Upadhyay, H.N. VermaGreen synthesis of silver nanoparticles using Argimone mexicana leaf extract and evaluation of their antimicrobial activities
Digest Journal of Nanomaterials and Biostructures, 5 (2010), pp. 483-489
- [27]
H.J. Lee, S.Y. Yeo, S.H. JeongAntibacterial effect of nanosized silver colloidal solution on textile fabrics
Journal of Materials Science, 38 (2003), pp. 2199-2204
- [28]
T.C. Long, N. Saleh, R.D. Tilton, G.V. Lowry, B. Veronesi TitaniumDioxide (P25) produces reactive oxygen species in immortalized microglia (Bv2): implications for nanoparticle neurotoxicity
Environmental Science and Technology, 40 (2006), pp. 4346-4352
- [29]
S. Magrez, V. Kasas, N. Salicio, J. Pasquier, W. Seo, M. Celio, S. Catsicas, B. Schwaller, L. ForroCellular toxicity of carbon-based nanomaterials
Nano Letters, 6 (2006), pp. 1121-1125
- [30]
S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelnek, A. GedankenMicrowave-assisted synthesis of nanocrystalline MgO and its use as bacteriocide
Advanced Functional Materials, 15 (2005), pp. 1708-1715
- [31]
A. Nel, T. Xia, L. Mädler, N. LiToxic potential of materials at the nanolevel
Science, 311 (2006), pp. 622-627
- [32]
C. Perez, M. Paul, P. BazerqueAn antibiotic assay by the agar well diffusion method
Acta Biologica Et Medica Experimentalis Exp., 15 (1990), pp. 113-115
- [33]
K. Qi, X. Chen, Y. Liu, J.H. Xin, C.L. Mak, W.A. DaoudFacile preparation of anatase/SiO2 spherical nanocomposites and their application in self cleaning textiles
Journal of Materials Chemistry, 17 (2007), pp. 3504-3508
- [34]
S. Ravikumar, G. Ramanathan, M. Subhakaran, S. Jacob InbanesonAntimicrobial compounds from marine halophytes for silkworm disease treatment
International Journal of Medical Sciences, 5 (2009), pp. 184-191
- [35]
W. Rizwan, K. Young-Soon, M. Amrita, Y. Soon-Il, Sh. Hyung-ShikFormation of ZnO micro-flowers prepared via solution process and their antibacterial activity
Journal of Nanoscale Research Letters, 5 (2010), pp. 1675-1681
- [36]
G. Sangeetha, S. Rajeshwari, R. VenckateshGreen synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties
Materials Research Bulletin, 46 (2011), pp. 2560-2566
- [37]
V. Sambhy, M.M. MacBride, B.R. Peterson, A. SenSilver bromide nanoparticle / polymer composites: dual action tunable antimicrobial materials
Journal of the American Chemical Society, 128 (2006), pp. 9798-9808
- [38]
J. SawaiQuantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay
Journal of Microbiological Methods, 54 (2003), pp. 177-182
- [39]
J. Sawai, T. YoshikawaQuantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay
Journal of Applied Microbiology, 96 (2004), pp. 803-809
- [40]
A. Saxena, R.M. Tripathi, R.P. SinghBiological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity
Digest Journal of Nanomaterials and Biostructures, 5 (2010), pp. 427-432
- [41]
R. Seshadri
C.N.R. Rao, A. Müller, A.K. Cheetham (Eds.), The Chemistry of Nanomaterials, Vol.1, Wiley-VCH Verlag GmbH, Weinheim (2004), pp. 94-112
- [42]
S. Shiv Shankar, A. Rai, A. Ahmad, M. SastryRapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth
Journal of Colloid and Interface Science, 275 (2004), pp. 496-502
- [42]
S. Shiv Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, M. SastryBiological synthesis of triangular gold nanoprisms
Nature Materials, 3 (2004), pp. 482-488
- [43]
I.O. Sosa, C. Noguez, R.G. BarreraOptical properties of metal nanoparticles with arbitrary shapes
Journal of Physical Chemistry B, 107 (2003), pp. 6269-6975
- [44]
K. Sunanda, Y. Kikuchi, K. Hashimoto, A. FujishimaBactericidal and detoxification effects of TiO2 thin film photocatalysts
Environmental Science and Technology, 32 (1998), pp. 726-728
- [45]
Y.G. Sun, B. Mayers, T. Herricks, Y.N. XiaPolyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence
Nano Letters, 3 (2003), pp. 955-960
- [46]
T. Sungkaworn, W. Triampo, P. Nalakarn, D. Triampo, I.M. Tang, Y. LenburyThe effects of TiO2 nanoparticles on tumor cell colonies: fractal dimension and morphological properties
International Journal of Biomedical Science : IJBS, 2 (2007), pp. 67-74
- [47]
J. Sunita, G. Suresh, N. Madhav, R. Anjali, Copper Oxide NanoparticlesSynthesis, characterization and their antibacterial activity
Journal of Cluster Science, 22 (2011), pp. 121-129
- [48]
P.L. Taylor, A.L. Ussher, R.E. BurrellImpact of heat on nanocrystalline silver dressings. Part I: chemical and biological properties
Biomaterials, 26 (2005), pp. 7221-7229
- [49]
L. TheodoreNanotechnology: Basic Calculations for Engineers and Scientists
Wiley, Hoboken (2006)
- [50]
N. Vigneshwaran, S. Kumar, A.A. Kathe, P.V. Varadarajan, V. PrasadFunctional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites
Nanotechnology, 17 (2006), pp. 5087-5095
- [51]
J.X. Wan, L.X. Wen, Z.H. Wang, J.F. ChenImmobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects
Materials Chemistry and Physics, 96 (2006), pp. 90-97
- [52]
X. Wang, F. Yang, W. Yang, X. YangA study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface
Chemical Communications (Camb), 42 (2007), pp. 4419-4421
- [53]
R.H. Wang, J.H. Xin, X.M. Tao, W.A. DaoudZnO nanorods grown on cotton fabrics at low temperature
Chemical Physics Letters, 398 (2004), pp. 250-255
- [54]
X. Wang, J. Lu, M. Xu, B. XingSorption of pyrene by regular and nanoscaled metal oxide particles: influence of adsorbed organic matter
Environmental Science and Technology, 42 (2008), pp. 7267-7272
- [55]
L. Weisheng, H. Yue-wern, Z. Xiao-Dong, M. YinfaToxicity of cerium oxide nanoparticles in human lung cancer cells
International Journal of Toxicology, 25 (2006), pp. 451-457
- [56]
J.H. Xin, W.A. Daoud, Y.Y. KongA new approach to UV-blocking treatment for cotton fabrics
Textile Research Journal, 4 (2004), pp. 97-100
- [57]
O. Yamamoto, M. Komatsu, J. Sawai, Z. NakagawaAntibacterial activity of ZnO powder with crystallographic orientation
Journal of Materials Science Materials in Medicine, 19 (2008), pp. 1407-1412
- [58]
H. Zhang, G. ChenPotent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol–gel method
Environmental Science and Technology, 43 (2009), pp. 2905-2910
- [59]
L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J. O′Neill, D.W. YorkZnO nanofluids – a potential antibacterial agent
Progress in Natural Science, 18 (2008), pp. 939-944