Published Date
, Volume 19, Issue 5, pp 1449–1480
Title
Bamboo fiber and its reinforced composites: structure and properties
Jianwei Song
Debbie P. Anderson
Peter R. Chang
Yan Hua
Review Paper
Cite this article as:
Liu, D., Song, J., Anderson, D.P. et al. Cellulose (2012) 19: 1449. doi:10.1007/s10570-012-9741-1
Abstract
Natural plant fibers have unequivocally contributed economic prosperity and sustainability in our daily lives. Particularly, bamboo fibers have been used for industrial applications as diverse as textiles, paper, and construction. Recent renewed interest in bamboo fiber (BF) is primarily targeted for the replacement or reduction in use of glass fiber from non-renewable resources. In this review, various mechanical, chemical, and biological approaches for the preparation and separation of macro-, micro-, and nano-sized fibers from raw bamboo are summarized. The differences in the mechanical, thermal, and other properties of fibers from different materials are linked to their size, aspect ratio, surface charge and groups, and their function in nature. Biocomposites made of BF are considered to be green, environmentally responsible eco-products. Different processing parameters such as fiber extraction, surface modification, and synthesis of the composites affect the characteristics of composites. Fiber length, orientation, concentration, dispersion, aspect ratio, selection of matrix, and chemistry of the matrix must all be considered during fabrication in order to achieve desirable functionalities and performance. Because of the hydrophilic nature of BF, different methods may be adopted to improve interfacial surface adhesion. A better understanding of the fiber structure and characteristics that influence composite performance could lead to the development of additives, coatings, binders, or sizing suitable for natural fiber and a variety of polymeric matrices.
References
For further details log on website :
http://link.springer.com/article/10.1007/s10570-012-9741-1
, Volume 19, Issue 5, pp 1449–1480
Title
Bamboo fiber and its reinforced composites: structure and properties
Review Paper
- First Online:
- 25 July 2012
DOI: 10.1007/s10570-012-9741-1
Abstract
Natural plant fibers have unequivocally contributed economic prosperity and sustainability in our daily lives. Particularly, bamboo fibers have been used for industrial applications as diverse as textiles, paper, and construction. Recent renewed interest in bamboo fiber (BF) is primarily targeted for the replacement or reduction in use of glass fiber from non-renewable resources. In this review, various mechanical, chemical, and biological approaches for the preparation and separation of macro-, micro-, and nano-sized fibers from raw bamboo are summarized. The differences in the mechanical, thermal, and other properties of fibers from different materials are linked to their size, aspect ratio, surface charge and groups, and their function in nature. Biocomposites made of BF are considered to be green, environmentally responsible eco-products. Different processing parameters such as fiber extraction, surface modification, and synthesis of the composites affect the characteristics of composites. Fiber length, orientation, concentration, dispersion, aspect ratio, selection of matrix, and chemistry of the matrix must all be considered during fabrication in order to achieve desirable functionalities and performance. Because of the hydrophilic nature of BF, different methods may be adopted to improve interfacial surface adhesion. A better understanding of the fiber structure and characteristics that influence composite performance could lead to the development of additives, coatings, binders, or sizing suitable for natural fiber and a variety of polymeric matrices.
References
- Agarwal BD, Broutman LJ, Chandrashekhara K (2006) Analysis and performance of fiber composites, 3rd edn. Wiley, New York
- Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Fiber texture and mechanical graded structure of bamboo. Compos B Eng 28:13–20CrossRef
- Bao L, Chen Y, Zhou W, Wu Y, Huang Y (2011) Bamboo fibers @ poly(ethylene glycol)-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 122:2456–2466CrossRef
- Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051CrossRef
- Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC Press, USA, pp 36–108
- Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336CrossRef
- Cai G, Wang J, Nie Y, Tian X, Zhu X, Zhou X (2011) Effects of toughening agents on the behaviors of bamboo plastic composites. Polym Compos 32:1945–1952CrossRef
- Chang F, Lee S-H, Toba K, Nagatani A, Endo T (2012) Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Sci Technol 46:393–403CrossRef
- Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2011a) Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polym Sci 119:1619–1626CrossRef
- Chattopadhyay SK, Singh S, Pramanik N, Niyogi UK, Khandal RK, Uppaluri R, Ghoshal AK (2011b) Biodegradability studies on natural fibers reinforced polypropylene composites. J Appl Polym Sci 121:2226–2232CrossRef
- Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446CrossRef
- Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: a study of the mechanical properties. J Appl Polym Sci 69:1891–1899CrossRef
- Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos Part A-Appl S 40:2013–2019CrossRef
- Coats ER, Loge FJ, Wolcott MP, Englund K, McDonald AG (2008) Production of natural fiber reinforced thermoplastic composites through the use of PHB-rich biomass. Bioresource Technol 99:2680–2686CrossRef
- Das M, Chakraborty D (2006a) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102:5050–5056CrossRef
- Das M, Chakraborty D (2006b) Influence of mercerization on the dynamic mechanical properties of bamboo, a natural lignocellulosic composite. Ind Eng Chem Res 45:6489–6492CrossRef
- Das M, Chakraborty D (2007) Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips-novolac composites. Polym Compos 28:57–60CrossRef
- Das M, Chakraborty D (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J Appl Polym Sci 107:522–527CrossRef
- Das M, Chakraborty D (2009a) The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1:—polyester resin matrix. J Appl Polym Sci 112:489–495CrossRef
- Das M, Chakraborty D (2009b) Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix. J Appl Polym Sci 112:447–453CrossRef
- Das M, Pal A, Chakraborty D (2006) Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo-novolac composites. J Appl Polym Sci 100:238–244CrossRef
- Das M, Prasad VS, Chakrabarty D (2009) Thermogravimetric and weathering study of novolac resin composites reinforced with mercerized bamboo fiber. Polym Compos 30:1408–1416CrossRef
- Deshpande AP, Rao MB, Rao CL (2000) Extraction of BFs and their use as reinforcement in polymeric composites. J Appl Polym Sci 76:83–92CrossRef
- Fakirov S, Bhattacharyya D (eds) (2007) Handbook of engineering biopolymers: homopolymers, blends and composites. Carl Hanser Verlag, Munich
- Gatenholm P, Mathiasson A (1994) Biodegradable natural composites. II. Synergistic effects of processing cellulose with PHB. J Appl Polym Sci 51:1231–1237CrossRef
- González D, Santos V, Parajó JC (2011) Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo. Chem Eng J 167:278–287CrossRef
- Gratani L, Crescente MF, Varone L, Fabrini G, Digiulio E (2008) Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora 203:77–84CrossRef
- Grosser D, Liese W (1971) On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci Technol 5:290–312CrossRef
- Han G, Cheng W (2010) Effect of coupling treatment and nanoclay on thermal stability of bamboo flour-filled high density polyethylene composites. Adv Mater Res 113–116:2349–2352CrossRef
- Han G, Lei Y, Wu Q, Kojima Y, Suzuki S (2008) Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ 16:123–130CrossRef
- He J, Tang Y, Wang S (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR Spectroscopy data. Iran Polym J 16:807–818
- Hesse-Ertelt S, Witter R, Ulrich AS, Kondo T, Heinze T (2008) Spectral assignments and anisotropy data of cellulose I-alpha: 13C-NMR chemical shift data of cellulose I-alpha determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains. Magn Reson Chem 46:1030–1036CrossRef
- Higuchi T (1987) Chemistry and biochemistry of bamboo. Bamboo J 4:132–145
- Huang X, Netravali A (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69:1009–1015CrossRef
- Huang Y, Liu H, He P, Yuan L, Xiong H, Xu Y, Yu Y (2010) Nonisothermal crystallization kinetics of modified bamboo fiber/PCL composites. J Appl Polym Sci 116:2119–2125CrossRef
- Ilvessalo-Pläffli MS (1995) Fiber atlas: identification of papermaking fibers. Springer, Berlin, pp 292–359
- Ishii T, Hiroi T (1990) Linkage of phenolic acids to cell wall polysaccharides of bamboo shoot. Carbohydr Res 206:297–310CrossRef
- Ismail H, Edyham MR, Wirjosentono B (2002a) Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polym Test 21:139–144CrossRef
- Ismail H, Shuhelmy S, Edyham MR (2002b) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47CrossRef
- Jain S, Kumar R (1992) Mechanical behaviour of bamboo and bamboo composite. J Mater Sci 27:4598–4604CrossRef
- Jiang L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y (2008) Study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J Polym Environ 16:83–93CrossRef
- Jiang L, Chen F, Qian J, Huang J, Wolcott MP, Liu L, Zhang J (2010) Reinforcing and toughening effects of bamboo pulp fiber on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber composites. Ind Eng Chem Res 49:572–577CrossRef
- John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRef
- Kalia S, Avérous L (eds) (2011) Biopolymers: biomedical and environmental applications. John Wiley & Scrivener Publishing, Hoboken, NJ
- Kang JT, Kim SH (2011) Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification. Macromol Res 19:789–796CrossRef
- Kim JY, Peck JH, Hwang S-H, Hong J, Hong SC, Huh W, Lee S-W (2008) Preparation and mechanical properties of poly(vinyl chloride)/bamboo flour composites with a novel block copolymer as a coupling agent. J Appl Polym Sci 108:2654–2659CrossRef
- Kim BJ, Yao F, Han G, Wu Q (2012) Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polym Compos 3:68–78CrossRef
- Klemm D, Schmauder HP, Heinze T (2002) Cellulose. Biopolymers 6:275–319
- Kori Y, Kitagawa K, Hamada H (2005) Crystallization behavior and viscoelasticity of bamboo-fiber composites. J Appl Polym Sci 98:603–612CrossRef
- Krishnaprasad R, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2009) Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposites. J Polym Environ 17:109–114CrossRef
- Kumar S, Choudhary V, Kumar R (2010) Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. J Therm Anal Calorim 102:751–761CrossRef
- Kumar V, Kushwaha PK, Kumar R (2011) Impedance-spectroscopy analysis of oriented and mercerized bamboo fiber-reinforced epoxy composite. J Mater Sci 46:3445–3451CrossRef
- Kushwaha PK, Kumar R (2010) Bamboo fiber reinforced thermosetting resin composites: effect of graft copolymerization of fiber with methacrylamide. J Appl Polym Sci 118:1006–1013
- Li Z (2005) Study on bamboo’s fiber reinforced polypropylene composite. J Fujian College Forestry 25:197–201 (in Chinese)
- Li Z, Chen L, Huang Z, Zhan H (2005) Reinforcing mechanical of bamboo fiber reinforced polyamide resin composite. Trans China Pulp Paper 2:19–22 (in Chinese)
- Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9:735–739CrossRef
- Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A-Appl S 39:1891–1900CrossRef
- Liu H, Huang Y, Yuan L, He P, Cai Z, Shen Y, Xu Y, Yu Y, Xiong H (2010a) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohyd Polym 79:513–519CrossRef
- Liu D, Zhong T, Chang PR, Li K, Wu Q (2010b) Starch composites reinforced by bamboo cellulose crystals. Bioresource Technol 101:2529–2536CrossRef
- Mi Y, Chen X, Cuo Q (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J Appl Polym Sci 64:1267–1273CrossRef
- Mi Y, Chen X, Cuo Q, Chan C (1999) Bamboo fiber reinforced polypropylene composites. US Patent 5882745
- Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef
- Mohanty S, Nayak SK (2007) Rheological characterization of HDPE/sisal fiber composites. Polymer Eng Sci 47:1634–1642CrossRef
- Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. Hemp fibres. J Mater Sci 41:2483–2496CrossRef
- Nayak SK, Mohanty S, Samal SK (2009) Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater Sci Eng A Struct 523:32–38CrossRef
- Ogawa K, Hirogaki T, Aoyama E, Katayama T (2004) Data mining of optimum conditions to acquire bamboo micro-fiber with mechanical methods. WIT Trans Built Environ High Perf Struct Mater II 7:441–450
- Ogawa K, Hirogaki T, Aoyama E, Imamura H (2008) Bamboo fiber extraction method using a machining center. J Adv Mech Design Sys Manuf 2:550–559CrossRef
- Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A-Appl S 40:469–475CrossRef
- Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246
- Parameswaran N, Liese W (1980) Ultrastructural aspects of bamboo cells. Cellul Chem Technol 14:587–609
- Pilla S (ed) (2011) Handbook of bioplastics and biocomposites engineering applications. Scrivener Publishing LLC, USA
- Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct 77:288–295CrossRef
- Ratna Prasad AV, Mohana Rao K (2011) Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater Design 32:4658–4663CrossRef
- Satyanarayana KG, Sukumaran K, Mukherjee PS, Pavitharan C, Pillai SGK (1990) Natural fibre-polymer composites. Cement Concr Compos 12:117–136CrossRef
- Saxena M, Gowri VS (2003) Studies on bamboo polymer composites with polyester amide polyol as interfacial agent. Polym Compos 24:428–436CrossRef
- Serizawa S, Inoue K, Iji M (2006) Kenaf-fiber-reinforced poly (lactic acid) used for electronic products. J Appl Polym Sci 100:618–624CrossRef
- Shao S, Jin Z, Wen G, Iiyama K (2009) Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin. Wood Sci Technol 43:643–652CrossRef
- Shi QF, Mou HY, Li QY, Wang JK, Guo WH (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123:2828–2836CrossRef
- Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Part A-Appl S 39:640–646CrossRef
- Shih YF (2007) Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater Sci Eng A Struct 445–446:289–295CrossRef
- Singh S (2009) Green bio-composites from polyhydroxybutyrate-co-valerate (PHBV), wood fiber and talc. ProQuest, UMI Dissertation Publishing
- Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Tech 67:1753–1763CrossRef
- Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A-Appl S 39:875–886CrossRef
- Sun J, Tian J, Gu Z (2006) Comparison of structure and thermal property between bamboo fibers and regenerated bamboo fibers. J Tianjin Polytech Univ 25:37–40
- Thwe MM, Liao K (2000) Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite. J Mater Sci Lett 19:1873–1876CrossRef
- Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Part A-Appl S 33:43–52CrossRef
- Thwe MM, Liao K (2003) Environmental effects on bamboo-glass/polypropylene hybrid composites. J Mater Sci 38:363–376CrossRef
- Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43:775–787CrossRef
- Tung N, Yamamoto H, Matsuoka T, Fujii T (2004) Effect of surface treatment on interfacial strength between bamboo fiber and PP resin. JSME Int J, Ser A 47:561–565CrossRef
- Varada Rajulu A, Rama Devi R, Ganga Devi L (2005) Thermal degradation parameters of bamboo fiber reinforcement. J Reinforced Plastics Composites 24:1407–1411CrossRef
- Wai NN, Nanko H, Murakami K (1985) A morphological study on the behavior of bamboo pulp fibers in the beating process. Wood Sci Technol 19:211–222CrossRef
- Wan YQ, Ko FK (2009) Hierarchical structure and mechanical properties of bamboo fibrils. ICCM-17, Scotland, July 27–31
- Wang R, Wang C (2006) Research on raw bamboo fiber reinforced polypropylene composites. China Plastics 10:43–46 (in Chinese)
- Wang H, Chang R, Sheng K, Adl M, Qian X (2008) Impact response of bamboo-plastic composites with the properties of bamboo and polyvinylchloride (PVC). J Bionic Eng 5(suppl):28–33CrossRef
- Wang H, Sheng K, Chen J, Mao H, Qian X (2010) Mechanical and thermal properties of sodium silicate treated moso bamboo particles reinforced PVC composites. Sci China Ser E Tech Sci 53:2932–2935CrossRef
- Wang X, Ren H, Zhang B, Fei B, Burgert I (2011) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. J Roy Soc Interface. doi:10.1098/rsif.2011.0462
- Wong S, Shanks R, Hodzic A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287:647–655
- Wong KJ, Zahi S, Low KO, Lim CC (2010) Fracture characterisation of short bamboo fibre reinforced polyester composites. Mater Design 31:4147–4154CrossRef
- Xu X, Wang Y, Zhang X, Jing G, Yu D, Wang S (2006) Effects on surface properties of natural bamboo fibers treated with atmospheric pressure argon plasma. Surf Interface Anal 38:1211–1217CrossRef
- Xu Y, Lu Z, Tang R (2007) Structure and thermal properties of bamboo viscose, Tencel and conventional viscose fiber. J Therm Anal Calorim 89:197–201CrossRef
- Yang Y (2004) Polypropylene composites reinforced with bamboo fibers. Plastic 33:47–49 (in Chinese)
- Yao W, Zhang W (2011) Research on manufacturing technology and application of natural bamboo fibre. 2011 Fourth international conference on intelligent computation technology and automation. doi:10.1109/ICICTA.2011.327
- Zhang Y, Wu H, Qiu Y (2010) Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technol 101:7944–7950CrossRef
For further details log on website :
http://link.springer.com/article/10.1007/s10570-012-9741-1