Everything About Wood

Find the information such as human life, natural resource,agriculture,forestry, biotechnology, biodiversity, wood and non-wood materials.

Blog List

Thursday, 18 August 2016

Bamboo fiber and its reinforced composites: structure and properties

Published Date
October 2012, Volume 19, Issue 5, pp 1449–1480

Title 
Bamboo fiber and its reinforced composites: structure and properties

  •  Author 


  • Dagang Liu, 
  • Jianwei Song, 
  • Debbie P. Anderson, 
  • Peter R. Chang, 
  • Yan Hua

  • Review Paper
    First Online: 
    25 July 2012
    DOI: 10.1007/s10570-012-9741-1


    Cite this article as: 
    Liu, D., Song, J., Anderson, D.P. et al. Cellulose (2012) 19: 1449. doi:10.1007/s10570-012-9741-1

    Abstract

    Natural plant fibers have unequivocally contributed economic prosperity and sustainability in our daily lives. Particularly, bamboo fibers have been used for industrial applications as diverse as textiles, paper, and construction. Recent renewed interest in bamboo fiber (BF) is primarily targeted for the replacement or reduction in use of glass fiber from non-renewable resources. In this review, various mechanical, chemical, and biological approaches for the preparation and separation of macro-, micro-, and nano-sized fibers from raw bamboo are summarized. The differences in the mechanical, thermal, and other properties of fibers from different materials are linked to their size, aspect ratio, surface charge and groups, and their function in nature. Biocomposites made of BF are considered to be green, environmentally responsible eco-products. Different processing parameters such as fiber extraction, surface modification, and synthesis of the composites affect the characteristics of composites. Fiber length, orientation, concentration, dispersion, aspect ratio, selection of matrix, and chemistry of the matrix must all be considered during fabrication in order to achieve desirable functionalities and performance. Because of the hydrophilic nature of BF, different methods may be adopted to improve interfacial surface adhesion. A better understanding of the fiber structure and characteristics that influence composite performance could lead to the development of additives, coatings, binders, or sizing suitable for natural fiber and a variety of polymeric matrices.

    References

    1. Agarwal BD, Broutman LJ, Chandrashekhara K (2006) Analysis and performance of fiber composites, 3rd edn. Wiley, New York
    2. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Fiber texture and mechanical graded structure of bamboo. Compos B Eng 28:13–20CrossRef
    3. Bao L, Chen Y, Zhou W, Wu Y, Huang Y (2011) Bamboo fibers @ poly(ethylene glycol)-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 122:2456–2466CrossRef
    4. Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051CrossRef
    5. Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC Press, USA, pp 36–108
    6. Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336CrossRef
    7. Cai G, Wang J, Nie Y, Tian X, Zhu X, Zhou X (2011) Effects of toughening agents on the behaviors of bamboo plastic composites. Polym Compos 32:1945–1952CrossRef
    8. Chang F, Lee S-H, Toba K, Nagatani A, Endo T (2012) Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Sci Technol 46:393–403CrossRef
    9. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2011a) Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polym Sci 119:1619–1626CrossRef
    10. Chattopadhyay SK, Singh S, Pramanik N, Niyogi UK, Khandal RK, Uppaluri R, Ghoshal AK (2011b) Biodegradability studies on natural fibers reinforced polypropylene composites. J Appl Polym Sci 121:2226–2232CrossRef
    11. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446CrossRef
    12. Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: a study of the mechanical properties. J Appl Polym Sci 69:1891–1899CrossRef
    13. Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos Part A-Appl S 40:2013–2019CrossRef
    14. Coats ER, Loge FJ, Wolcott MP, Englund K, McDonald AG (2008) Production of natural fiber reinforced thermoplastic composites through the use of PHB-rich biomass. Bioresource Technol 99:2680–2686CrossRef
    15. Das M, Chakraborty D (2006a) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102:5050–5056CrossRef
    16. Das M, Chakraborty D (2006b) Influence of mercerization on the dynamic mechanical properties of bamboo, a natural lignocellulosic composite. Ind Eng Chem Res 45:6489–6492CrossRef
    17. Das M, Chakraborty D (2007) Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips-novolac composites. Polym Compos 28:57–60CrossRef
    18. Das M, Chakraborty D (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J Appl Polym Sci 107:522–527CrossRef
    19. Das M, Chakraborty D (2009a) The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1:—polyester resin matrix. J Appl Polym Sci 112:489–495CrossRef
    20. Das M, Chakraborty D (2009b) Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix. J Appl Polym Sci 112:447–453CrossRef
    21. Das M, Pal A, Chakraborty D (2006) Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo-novolac composites. J Appl Polym Sci 100:238–244CrossRef
    22. Das M, Prasad VS, Chakrabarty D (2009) Thermogravimetric and weathering study of novolac resin composites reinforced with mercerized bamboo fiber. Polym Compos 30:1408–1416CrossRef
    23. Deshpande AP, Rao MB, Rao CL (2000) Extraction of BFs and their use as reinforcement in polymeric composites. J Appl Polym Sci 76:83–92CrossRef
    24. Fakirov S, Bhattacharyya D (eds) (2007) Handbook of engineering biopolymers: homopolymers, blends and composites. Carl Hanser Verlag, Munich
    25. Gatenholm P, Mathiasson A (1994) Biodegradable natural composites. II. Synergistic effects of processing cellulose with PHB. J Appl Polym Sci 51:1231–1237CrossRef
    26. González D, Santos V, Parajó JC (2011) Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo. Chem Eng J 167:278–287CrossRef
    27. Gratani L, Crescente MF, Varone L, Fabrini G, Digiulio E (2008) Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora 203:77–84CrossRef
    28. Grosser D, Liese W (1971) On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci Technol 5:290–312CrossRef
    29. Han G, Cheng W (2010) Effect of coupling treatment and nanoclay on thermal stability of bamboo flour-filled high density polyethylene composites. Adv Mater Res 113–116:2349–2352CrossRef
    30. Han G, Lei Y, Wu Q, Kojima Y, Suzuki S (2008) Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ 16:123–130CrossRef
    31. He J, Tang Y, Wang S (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR Spectroscopy data. Iran Polym J 16:807–818
    32. Hesse-Ertelt S, Witter R, Ulrich AS, Kondo T, Heinze T (2008) Spectral assignments and anisotropy data of cellulose I-alpha: 13C-NMR chemical shift data of cellulose I-alpha determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains. Magn Reson Chem 46:1030–1036CrossRef
    33. Higuchi T (1987) Chemistry and biochemistry of bamboo. Bamboo J 4:132–145
    34. Huang X, Netravali A (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69:1009–1015CrossRef
    35. Huang Y, Liu H, He P, Yuan L, Xiong H, Xu Y, Yu Y (2010) Nonisothermal crystallization kinetics of modified bamboo fiber/PCL composites. J Appl Polym Sci 116:2119–2125CrossRef
    36. Ilvessalo-Pläffli MS (1995) Fiber atlas: identification of papermaking fibers. Springer, Berlin, pp 292–359
    37. Ishii T, Hiroi T (1990) Linkage of phenolic acids to cell wall polysaccharides of bamboo shoot. Carbohydr Res 206:297–310CrossRef
    38. Ismail H, Edyham MR, Wirjosentono B (2002a) Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polym Test 21:139–144CrossRef
    39. Ismail H, Shuhelmy S, Edyham MR (2002b) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47CrossRef
    40. Jain S, Kumar R (1992) Mechanical behaviour of bamboo and bamboo composite. J Mater Sci 27:4598–4604CrossRef
    41. Jiang Z (2010) http://news.xinhuanet.com/english2010/china/2010-07/18/c_13402777.htm
    42. Jiang L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y (2008) Study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J Polym Environ 16:83–93CrossRef
    43. Jiang L, Chen F, Qian J, Huang J, Wolcott MP, Liu L, Zhang J (2010) Reinforcing and toughening effects of bamboo pulp fiber on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber composites. Ind Eng Chem Res 49:572–577CrossRef
    44. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRef
    45. Kalia S, Avérous L (eds) (2011) Biopolymers: biomedical and environmental applications. John Wiley & Scrivener Publishing, Hoboken, NJ
    46. Kang JT, Kim SH (2011) Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification. Macromol Res 19:789–796CrossRef
    47. Kim JY, Peck JH, Hwang S-H, Hong J, Hong SC, Huh W, Lee S-W (2008) Preparation and mechanical properties of poly(vinyl chloride)/bamboo flour composites with a novel block copolymer as a coupling agent. J Appl Polym Sci 108:2654–2659CrossRef
    48. Kim BJ, Yao F, Han G, Wu Q (2012) Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polym Compos 3:68–78CrossRef
    49. Klemm D, Schmauder HP, Heinze T (2002) Cellulose. Biopolymers 6:275–319
    50. Kori Y, Kitagawa K, Hamada H (2005) Crystallization behavior and viscoelasticity of bamboo-fiber composites. J Appl Polym Sci 98:603–612CrossRef
    51. Krishnaprasad R, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2009) Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposites. J Polym Environ 17:109–114CrossRef
    52. Kumar S, Choudhary V, Kumar R (2010) Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. J Therm Anal Calorim 102:751–761CrossRef
    53. Kumar V, Kushwaha PK, Kumar R (2011) Impedance-spectroscopy analysis of oriented and mercerized bamboo fiber-reinforced epoxy composite. J Mater Sci 46:3445–3451CrossRef
    54. Kushwaha PK, Kumar R (2010) Bamboo fiber reinforced thermosetting resin composites: effect of graft copolymerization of fiber with methacrylamide. J Appl Polym Sci 118:1006–1013
    55. Li Z (2005) Study on bamboo’s fiber reinforced polypropylene composite. J Fujian College Forestry 25:197–201 (in Chinese)
    56. Li Z, Chen L, Huang Z, Zhan H (2005) Reinforcing mechanical of bamboo fiber reinforced polyamide resin composite. Trans China Pulp Paper 2:19–22 (in Chinese)
    57. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9:735–739CrossRef
    58. Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A-Appl S 39:1891–1900CrossRef
    59. Liu H, Huang Y, Yuan L, He P, Cai Z, Shen Y, Xu Y, Yu Y, Xiong H (2010a) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohyd Polym 79:513–519CrossRef
    60. Liu D, Zhong T, Chang PR, Li K, Wu Q (2010b) Starch composites reinforced by bamboo cellulose crystals. Bioresource Technol 101:2529–2536CrossRef
    61. Mi Y, Chen X, Cuo Q (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J Appl Polym Sci 64:1267–1273CrossRef
    62. Mi Y, Chen X, Cuo Q, Chan C (1999) Bamboo fiber reinforced polypropylene composites. US Patent 5882745
    63. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974CrossRef
    64. Mohanty S, Nayak SK (2007) Rheological characterization of HDPE/sisal fiber composites. Polymer Eng Sci 47:1634–1642CrossRef
    65. Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. Hemp fibres. J Mater Sci 41:2483–2496CrossRef
    66. Nayak SK, Mohanty S, Samal SK (2009) Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater Sci Eng A Struct 523:32–38CrossRef
    67. Ogawa K, Hirogaki T, Aoyama E, Katayama T (2004) Data mining of optimum conditions to acquire bamboo micro-fiber with mechanical methods. WIT Trans Built Environ High Perf Struct Mater II 7:441–450
    68. Ogawa K, Hirogaki T, Aoyama E, Imamura H (2008) Bamboo fiber extraction method using a machining center. J Adv Mech Design Sys Manuf 2:550–559CrossRef
    69. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A-Appl S 40:469–475CrossRef
    70. Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246
    71. Parameswaran N, Liese W (1980) Ultrastructural aspects of bamboo cells. Cellul Chem Technol 14:587–609
    72. Pilla S (ed) (2011) Handbook of bioplastics and biocomposites engineering applications. Scrivener Publishing LLC, USA
    73. Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct 77:288–295CrossRef
    74. Ratna Prasad AV, Mohana Rao K (2011) Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater Design 32:4658–4663CrossRef
    75. Satyanarayana KG, Sukumaran K, Mukherjee PS, Pavitharan C, Pillai SGK (1990) Natural fibre-polymer composites. Cement Concr Compos 12:117–136CrossRef
    76. Saxena M, Gowri VS (2003) Studies on bamboo polymer composites with polyester amide polyol as interfacial agent. Polym Compos 24:428–436CrossRef
    77. Serizawa S, Inoue K, Iji M (2006) Kenaf-fiber-reinforced poly (lactic acid) used for electronic products. J Appl Polym Sci 100:618–624CrossRef
    78. Shao S, Jin Z, Wen G, Iiyama K (2009) Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin. Wood Sci Technol 43:643–652CrossRef
    79. Shi QF, Mou HY, Li QY, Wang JK, Guo WH (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123:2828–2836CrossRef
    80. Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Part A-Appl S 39:640–646CrossRef
    81. Shih YF (2007) Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater Sci Eng A Struct 445–446:289–295CrossRef
    82. Singh S (2009) Green bio-composites from polyhydroxybutyrate-co-valerate (PHBV), wood fiber and talc. ProQuest, UMI Dissertation Publishing
    83. Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Tech 67:1753–1763CrossRef
    84. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A-Appl S 39:875–886CrossRef
    85. Sun J, Tian J, Gu Z (2006) Comparison of structure and thermal property between bamboo fibers and regenerated bamboo fibers. J Tianjin Polytech Univ 25:37–40
    86. Thwe MM, Liao K (2000) Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite. J Mater Sci Lett 19:1873–1876CrossRef
    87. Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Part A-Appl S 33:43–52CrossRef
    88. Thwe MM, Liao K (2003) Environmental effects on bamboo-glass/polypropylene hybrid composites. J Mater Sci 38:363–376CrossRef
    89. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43:775–787CrossRef
    90. Tung N, Yamamoto H, Matsuoka T, Fujii T (2004) Effect of surface treatment on interfacial strength between bamboo fiber and PP resin. JSME Int J, Ser A 47:561–565CrossRef
    91. Varada Rajulu A, Rama Devi R, Ganga Devi L (2005) Thermal degradation parameters of bamboo fiber reinforcement. J Reinforced Plastics Composites 24:1407–1411CrossRef
    92. Wai NN, Nanko H, Murakami K (1985) A morphological study on the behavior of bamboo pulp fibers in the beating process. Wood Sci Technol 19:211–222CrossRef
    93. Wan YQ, Ko FK (2009) Hierarchical structure and mechanical properties of bamboo fibrils. ICCM-17, Scotland, July 27–31
    94. Wang R, Wang C (2006) Research on raw bamboo fiber reinforced polypropylene composites. China Plastics 10:43–46 (in Chinese)
    95. Wang H, Chang R, Sheng K, Adl M, Qian X (2008) Impact response of bamboo-plastic composites with the properties of bamboo and polyvinylchloride (PVC). J Bionic Eng 5(suppl):28–33CrossRef
    96. Wang H, Sheng K, Chen J, Mao H, Qian X (2010) Mechanical and thermal properties of sodium silicate treated moso bamboo particles reinforced PVC composites. Sci China Ser E Tech Sci 53:2932–2935CrossRef
    97. Wang X, Ren H, Zhang B, Fei B, Burgert I (2011) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. J Roy Soc Interface. doi:10.1098/rsif.2011.0462
    98. Wong S, Shanks R, Hodzic A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287:647–655
    99. Wong KJ, Zahi S, Low KO, Lim CC (2010) Fracture characterisation of short bamboo fibre reinforced polyester composites. Mater Design 31:4147–4154CrossRef
    100. Xu X, Wang Y, Zhang X, Jing G, Yu D, Wang S (2006) Effects on surface properties of natural bamboo fibers treated with atmospheric pressure argon plasma. Surf Interface Anal 38:1211–1217CrossRef
    101. Xu Y, Lu Z, Tang R (2007) Structure and thermal properties of bamboo viscose, Tencel and conventional viscose fiber. J Therm Anal Calorim 89:197–201CrossRef
    102. Yang Y (2004) Polypropylene composites reinforced with bamboo fibers. Plastic 33:47–49 (in Chinese)
    103. Yao W, Zhang W (2011) Research on manufacturing technology and application of natural bamboo fibre. 2011 Fourth international conference on intelligent computation technology and automation. doi:10.1109/ICICTA.2011.327
    104. Zhang Y, Wu H, Qiu Y (2010) Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technol 101:7944–7950CrossRef

    For further details log on website :
    http://link.springer.com/article/10.1007/s10570-012-9741-1
    at August 18, 2016 No comments:
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

    Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application

    Published Date
    February 2016, Vol.12(1):52–58, doi:10.1016/j.dt.2015.08.005
    Open Access, Creative Commons license, Funding information

    Title 

    Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application

    • Author 
    • R. Yahaya a,b
    • S.M. Sapuan a,c,d,,
    • M. Jawaid c,e
    • Z. Leman a
    • E.S. Zainudin a,c
    • aDepartment of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
    • bScience and Technology Research Institute for Defence (STRIDE), 43000 Kajang, Selangor, Malaysia
    • cLaboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
    • dAerospace Manufacturing Research Centre (AMRC), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
    • eDepartment of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
    Received 18 April 2015. Revised 20 August 2015. Accepted 20 August 2015. Available online 14 September 2015.

    Abstract

    This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78% and 43.55% higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78% and 52.07% higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.

    Keywords
    • Hybrid composites
    • Spall-liner
    • Aramid fibre
    • Porosity
    • Mechanical testing


    1 Introduction

    The search for alternative fibres as a replacement for man-made fibres has had continued. The well-known advantages of natural fibres are low density, low cost, its availability, renewability, ease of production, low process energy, non-abrasive, good acoustic property, acceptable specific strength and modulus, low cost, easily available, and easy recyclability [1], [2], [3], [4] and [5]. However, there are some limitations which required further improvement such as its moisture absorption due to hydrophobicity, dimensional stability and poor wettability, low thermal stability during processing and its poor adhesion with synthetic fibres [5] and [6]. The combination of two or more natural and synthetic fibres into a single matrix has led to the development of hybrid composites [7]. Natural–synthetic fibre hybrid composites are increasingly used in a wide range of applications [8]. The advantages of hybridisation are fully utilised to reduce the use of synthetic fibres which are generally non-environmentally friendly. Hybrid composites can be made from artificial fibres, natural fibres and with a combination of both artificial and natural fibres [9].
    Kenaf fibres (Hibiscus cannabinus L.) have a potential as an alternative for partial replacement of conventional materials or synthetic fibres as reinforcement in composites [10]. It is reported in the literature that kenaf are already being used in hybrid form with synthetic materials such as glass [8], [11], [12] and [13], carbon [14], and polyethylene terephthalate (PET) [15]. Aramid is one of the synthetic fibres used in hybrid composites. Aramid fibres are a class of heat-resistant and strong synthetic fibres which are widely used in aerospace and military applications, for ballistic rated body armour fabric and ballistic composites. Para-aramid fibre (Kevlar) is one of the commercially available aramid fibres and provides a unique combination of toughness, extra high tenacity and modulus, and thermal stability [16]. Kenaf–Kevlar hybridisation for defence application was reported in Refs. [17] and [18].
    There are factors that influence the properties of kenaf hybrid composites. One of the factors is the hybrid types (inner-laminar and interlaminar) [19]. Pearce et al. [20]relates the architecture and permeability of the fabrics and mechanical properties of woven carbon-fibre fabrics reinforced epoxy composites. Khan et al. [21] studied the influence of woven structure and direction on the mechanical properties, i.e. tensile, flexural and impact properties. It was reported that the mechanical properties of untreated woven jute composite (in warp direction) were improved compared with the non-woven. Azrin Hani et al. [22] studied the mechanical analysis of woven coir and kenaf natural fibres. They found that the structure used as a composite reinforcement in turn produced better mechanical properties. Pothan et al. [23] studied composites of woven sisal and polyester using three different weave architectures (plain, twill and matt) with special reference to resin viscosity, applied pressure, weave architecture, and fibre surface modification. This study provided detailed information on the effect of weaving, architecture and fibre content on the mechanical properties of the hybrid composites. Karahan et al. [24] observed the decrease in the mechanical properties of carbon–epoxy composites as a result of weaving structure. Karahan et al. [25]determined the effect of weaving structure and hybridisation on the low velocity impact properties of carbon–epoxy composites. It was reported that the best result obtained from twill woven composite with the energy absorption capacity was increased by around 9–10% with hybridisation. Alavudeen et al. [26] studied the effect of weaving patterns and random orientation on the mechanical properties of banana, kenaf, and banana/kenaf fibre-reinforced hybrid polyester composites. They found that the plain type showed improved tensile properties compared to the twill type in all the fabricated composites.
    Based on the literature studies, it was found that mechanical properties of kenaf–aramid hybrid composites were not reported. The present study aimed to evaluate the mechanical performance of kenaf–aramid hybrid composites for spall-liner application. Since the properties of a composite are often determined by the properties of the components and the fraction of inclusions [27], there is a requirement to study the effect of fibre properties in hybrid composite. In this study, the effects of kenaf fibre orientation on the physical and mechanical properties of kenaf–Kevlar hybrid laminate composites were studied. The kenaf fibres and Kevlar were arranged in similar sequences to prepare the hybrid laminated composites. The kenaf tested are in the form of woven and non-woven structures. The effects of the fibre content and its morphology were also analysed.

    2 Materials and methods

    2.1 Materials

    Aramid fabric used in this study is the plain weaved structure Kevlar 129. Three types of kenaf fibres were used in this study: woven, unidirectional and mat. The woven kenaf was produced by the interlacement of warp and weft yarns by using table loom. The yarns were obtained from local suppliers, Innovative Pultrusion Sdn Bhd. The unidirectional samples consist of kenaf yarn (800 tex) cross plied at 0°/90°. No chemical treatment was conducted on the kenaf fibres prior to this study. The resin used in this study is DER 331 liquid epoxy with a density of 1.08 g/m3. The resin was cured using joint mine type (905-3S), cycloaliphatic amines.

    2.2 Fabrication of composite laminates

    Hand lay-up method was adopted to fabricate laminates of Kevlar 129 and kenaf in epoxy resin. The specimen consists of six layers of Kevlar with the kenaf fibres in the middle as shown in Fig. 1. Kenaf and Kevlar fabric were hand lay-up with the epoxy matrix by mixing epoxy resin (DER 331) and amine hardener in the ratio of 2:1. Two thick mild steel plates are used as a mould (20 × 20 cm) in the fabrication process. All the mould surfaces were sprayed with a mould release agent to prevent adhesion of composites to the mould after curing and also to ensure smooth sample surface. Composites were cured by applying compression pressure using dead weights on the top of the mould and cured at room temperature for 24 hours. The specimens were also post-cured at 70 °C for 2 hours after removing from the mould. The composition of hybrid composites is shown in Table 1.
    Fig. 1. Illustration of kenaf–Kevlar hybrid composites.
    Table 1. Hybrid composite formulation.
    DesignationComposition
    Woven (W)One layer of woven kenaf (10.46 vol %) + woven Kevlar (21.2 vol %) + Epoxy
    Unidirectional (UD)One layer of 0°/90° kenaf yarn (16.51 vol %) + woven Kevlar (16.78 vol %) + Epoxy
    Mat (M)One layer of non-woven kenaf mat (9.57 vol %) + woven Kevlar (21.39 vol %) + Epoxy

    2.3 Density and void contents

    The density of the hybrid laminates was measured according to the ASTM D792 standards. Rectangular samples with size of 10 mm × 10 mm were used. Distilled water at room temperature was used as the immersion fluid and the mass was measured using a digital balance with a 10−3 g resolution. Five specimens were tested and an average was taken. To analyse the void percentage in the composite laminates, the ASTM D2734 standard was used. The void content was determined from the theoretical and the experimental density of the composites by using Eqs. (1)and (2):
    equation1
    equation2
    wf is the fibre weight fraction, wm is the matrix weight fraction, ρf is the fibre density, and ρr is the resin density.

    2.4 Dimensional stability and water absorption test

    The dimensional stability of kenaf–Kevlar hybrid composites was determined by water absorption and thickness swelling test. Three samples of each composite were immersed in distilled water at room temperature. After a certain period of time, the samples were removed from the water, wiped with a clean tissue paper before the weight and thickness value was measured. The percentage of water absorption was calculated by the weight difference using the following equation:
    equation3
    where we is the relative weight change or water absorption percentage, wt is the weight at time t, and   is the initial weight at t = 0, and t is the soaking time.
    The percentage of thickness swelling was estimated by
    equation4
    where Tre is the percentage of thickness swelling, Tt is the thickness at time t, and T0is the initial thickness at t = 0.

    2.5 Mechanical testing of composites

    Tensile test was conducted to determine the stress–strain behaviour of Kevlar–kenaf hybrid laminated composites. The test was carried out using Instron 33R 4484 testing machine based on ASTM D 3039 on samples with a size of 200 mm × 25 mm × actual thickness. A standard head displacement at a speed of 5 mm/min was applied. Flexural test was conducted by using 3-point loading using Instron 33R 4484 testing machine according to the ASTM D 790-03. The rectangular samples with dimensions of 100 mm × 20 mm were cut using a circular saw. The tests were conducted at a crosshead displacement rate of 5 mm/minute. For each test, three samples were tested at room temperature and average data were taken as a final result. For Charpy impact, the test samples are prepared and tested according to the ASTM D256. Five un-notched samples with dimensions of 80 mm × 10 mm × respective thickness from each composition were tested. The composite toughness was analysed and reported.

    2.6 Scanning electron microscopy (SEM)

    Kenaf–Kevlar hybrid composite samples were observed using a scanning electron microscope Leo 1430VP. The cross-sectional surfaces of the samples were cut and the scanning electron micrographs were taken to observe the interface adhesion of fibre layers and the matrix of the hybrid composites. Prior to the analysis, the hybrid composite samples were coated with palladium using a sputter coater.

    3 Results and discussion

    3.1 Density and void

    The measured density composites are listed in Table 2. It was observed that the density of samples W and UD are higher (1.10 g/cm3) than other composites. At the same time, the density of sample M is 0.87 g/cm3, which is lower than other composites. The presence of voids inside the samples was calculated by comparing the measured density with the theoretical density. It was found that the contents of the void in samples W, UD and M are 7.32%, 8.39% and 26.70% respectively. The result may be due to less air entrapment in the hybrid composites with woven kenaf structure, which led to lower void content. Measurement of void content is important as it is a critical imperfection in fibre reinforced composite materials [28].
    Table 2. Physical properties of hybrid composites.
    SampleDensity/(g⋅cm−3)Void (%)Water/%Dimension stability/%
    W1.107.327.212.04
    UD1.108.398.072.20
    M0.8726.7026.842.04

    3.2 Thickness swelling test

    The result of thickness swelling test was shown in Fig. 2. Sample UD shows the highest thickness swelling (3.03%) among all the samples. The woven sample shows moderate (2.20%) thickness swelling and the mat sample is lower (2.04%). The figure also showed that the increase in immersion time will allow water absorption, thus increases the thickness swelling of the hybrid composites until a constant thickness was obtained. According to Jawaid et al. [29] the hydrophilic properties of lignocellulose materials and the capillary action will cause the intake of water when the samples were soaked inwater and thus increase the dimension of the composite. The presence of voids also related to the thickness swelling of as the higher the void contents increase the thickness swelling of composites [29]. However, the result in swelling thickness is contradictory to this statement. This may be the effect of the hybridisation of kenaf with Kevlar, synthetic fibres. According to Ray and Rout [30], water molecules attract the hydrophilic groups of natural fibres and react with the hydroxyl groups (single bondOH) of the cellulose molecules to form hydrogen bonds. Thickness swelling occurred as the water molecules penetrate the natural fibre-reinforced composite through micro-cracks and reduce the interfacial adhesion of fibre with the matrix. Higher Kevlar content in sample M resulted in higher fibre–matrix interfacial adhesion, thus lower thickness swelling. Khalil et al. [31] reported that the water absorption and the thickness swelling of natural fibre reinforced with polyester composites are improved by the incorporation of synthetic fibres. The contradiction of water absorption and thickness swelling in this study may also be due to the exposure of the lignocellulosic fibre on the surface of the composite [32].
    Fig. 2. Thickness swelling of hybrid composites.

    3.3 Water absorption test

    The water absorption test was used to determine the amount of water absorbed by hybrid composite which consists of woven, UD and mat kenaf layers under specified conditions. Fig. 3 shows the behaviour of water absorption in the woven, mat and unidirectional (UD) samples. Initially, all samples had a sharp linear increase in moisture absorption and reached their saturation state with maximum moisture content of 8.07 % for W and UD samples and 26.84 % in sample M after 320 h of water immersion respectively. It was found that samples with woven and UD kenaf absorb less water before it reached a saturation state and the samples with kenaf mat recorded the highest water absorption before reaching the saturated state. Similar in thickness swelling, water absorption was also influenced by the void content of the composite; the weight of the composite will increase by trapping the water inside the voids [29]. In general, moisture diffusion in a composite depends on factors such as the volume fraction of fibre, fibre orientation, fibre type, area of exposed surfaces, surface protection voids, viscosity of the matrix, humidity and temperature [33].
    Fig. 3. Water absorption of hybrid composites.

    3.4 Effect of kenaf fibre orientations on the tensile properties of the hybrid composites

    Tensile strength of hybrid composites determined its ability to resist breaking under tensile stress. The tensile properties of kenaf–Kevlar hybrid composites are compared with various kenaf structures. Fig. 4 shows the tensile stress–strain curves of the tested samples. The curves show the brittleness and ductile nature of the composites. For woven and UD samples, the samples elongated with the increased stress level up to certain values where the kenaf layer failure occurred. The curve is continuous until total failure of the samples occurred as the outer layers of the Kevlar fabric break. No such observation was reported in the mat samples. Based on the curves, it was observed that the elongation at the break of woven samples is lesser than the other samples. The tensile properties of samples are compared and given in Fig. 5. The tensile strength and tensile modulus are found to be higher, 145.8 MPa and 3336.71 MPa, respectively, for composites with woven kenaf. The tensile strength and modulus of sample UD were recorded in intermediate with the values of 115.36 MPa and 2368.48 MPa. The lowest tensile properties are observed in non-woven kenaf sample M with the strength and modulus of 101.56 MPa and 1888.39 MPa respectively. The properties of the samples with woven kenaf are improved from the previous report [34]. It was found that the use of table looms weaved kenaf fabric compared with hand-weaved in earlier produced kenaf fabric. The result shows that the kenaf fibre orientation has an influential effect on the tensile properties of the composites. The advantages of woven fibre structure were observed in a previous work [26]. There are many other advantages of using woven composite such as stated in the published works [35] and [36].
    Fig. 4. Stress–strain curves of hybrid composites.
    Fig. 5. Tensile properties of hybrid composites.

    3.5 Effect of kenaf orientations on the flexural properties of the hybrid composites

    The flexural test is useful in quantifying the properties of composite mainly in structural applications. The flexural load–extension curves of woven, UD and mat kenaf–Kevlar hybrid composites are shown in Fig. 6. The curves indicate the failure mode of the composites. According to Pothan et al. [23] the abrupt failure of the composite can be related to flexural failure and the gradual decrease in loading indicates shear failure as the predominant mode. In this study, the failure mode can be classified as a mixed failure mode. Fig. 7 shows the variation in the flexural properties of kenaf–Kevlar hybrid composites. It is observed that the flexural strength of sample UD is the highest (100.3 MPa), followed by weaved structure and mat structure: 94.21 MPa and 35.82 MPa respectively. In terms of flexural modulus the woven samples are found to be the highest compared with other samples. From the works of earlier researchers it was found that the fibre orientation influences the properties of the composites [37]. The positive effect of woven structure was also observed by Alavudeen et al. [26].
    Fig. 6. Load–extension curves of hybrid composites.
    Fig. 7. Flexural properties of hybrid composites.
    Multiple factors can influence the flexural strength and modulus of hybrid composites. One factor might be the interfacial bonding between the fibres and epoxy matrix that facilitates load transfer. Fibre volume fraction and fibre orientation were determined as important factors in the mechanical properties of the composites [38]. Higher percentage of voids has also a negative effect on the flexural modulus and strength of the composites [39].

    3.6 Effect of kenaf orientations on the Charpy impact strength of the hybrid composites

    The Charpy impact test was conducted to determine the amount of energy absorbed by the hybrid composites during fracture. The results of the Charpy impact test are presented in Fig. 8. It is observed that the value of Charpy impact strength is higher in woven samples (51.41 kJ/m2) compared with the UD samples (41.24 kJ/m2) and mat samples (24.64 kJ/m2). The impact properties of composites depend on the interlaminar and interfacial adhesion between the fibre and the matrix. In this study it was found that the impact strength of kenaf–Kevlar hybrid composites is in similar trend as the tensile properties. This is in contrast with the observation of Van der Oever et al. [40] that the Charpy impact strength decreases with increasing fibre internal bonding and enhanced fibre–matrix adhesion, which is opposite to the trend for the tensile and flexural properties. The impact toughness of kenaf/glass hybrid composites was found to be influenced by the fibre orientation [41]. It was found to be affected by fibre orientation in glass fibre reinforced polymer matrix composites [42]. In determining the influences of weaving architectures on the impact resistance of multi-layer fabrics, Yang et al. [43] found that the weaving architectures and fabric firmness are less influential on the overall ballistic protection of multi-ply systems compared to the single-ply cases.
    Fig. 8. Charpy impact strength of hybrid composites.
    Generally, based on the above discussion, it was found that the effect of fibre orientations is important to the mechanical properties of hybrid composites as well as for ballistic resistant application [44]. Kenaf–Kevlar hybrid composites may find applications as alternatives to current spall-liners which are aimed at protection from impact by small fragments.

    3.7 Scanning electron microscope

    Fig. 9, Fig. 10 and Fig. 11 show the SEM surface morphology of kenaf–Kevlar hybrid composites. The cross-sectional observation of untested samples was focused on the fibre–matrix interfacial and void content in the matrix. The interstitial regions which serve as crack initiators are observed in woven and UD samples. Fig. 11 reveals a weak fibre/matrix interface with voids and cracks. This could be responsible for the deterioration of the stress transfer from the matrix to the fibres, thus affecting the mechanical properties of the composites [11].
    Fig. 9. Woven–Kevlar hybrid composite.
    Fig. 10. UD–Kevlar hybrid composite.
    Fig. 11. Mat kenaf–Kevlar hybrid composite.

    4 Conclusions

    The outcomes of the present work are the effect of kenaf fibre orientation on the mechanical properties of hybrid composites. The effect of kenaf structure (woven, non-woven UD and non-woven mat) was investigated along with the tensile, flexural and impact performance of the prepared composites. The following conclusions are made based on the extensive experimental study:
    • 1)
      The experiments show that a non-woven mat kenaf–Kevlar hybrid composite has low density as there are high void contents. Hybrid composites with woven and UD kenaf are almost similar in density and void content.
    • 2)
      The addition of kenaf affects the water absorption behaviour of the composites. The hydrophilic nature of kenaf fibres and void content are responsible for the water absorption and this adversely affects the fibre swelling and dimensional stability.
    • 3)
      The tensile and Charpy impact strength properties of woven kenaf–Kevlar composite are higher than other hybrid composites. On the contrary, the flexural strength of the hybrid composites with UD kenaf is slightly higher compared with a hybrid with woven kenaf.
    • 4)
      The scanning electron micrograph of the hybrid composite exhibited higher void content in the mat kenaf composites compared with the UD and woven kenaf.

    Acknowledgments

    The authors would like to show their appreciation to Universiti Putra Malaysia and Science and Technology Research Institute for Defence (STRIDE) for supporting the research activity.

    References

      • [1]
      • Z. Leman, S.M. Sapuan, M. Azwan, M.M.H.M. Ahmad, M.A. Maleque
      • The effect of environmental treatments on fiber surface properties and tensile strength of sugar palm fiber-reinforced epoxy composites
      • Polym Plast Technol Eng, Volume 47, 2008, pp. 606–612
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (24)
      • [2]
      • U.M.K. Anwar, M.T. Paridah, H. Hamdan, S.M. Sapuan, E.S. Bakar
      • Effect of curing time on physical and mechanical properties of phenolic-treated bamboo strips
      • Ind Crops Prod, Volume 29, 2009, pp. 214–219
      • Article
         | 
         PDF (641 K)
         | 
        View Record in Scopus
        Citing articles (32)
      • [3]
      • S.M. Sapuan, M. Harimi, M.A. Maleque
      • Mechanical properties of epoxy/coconut shell filler particle composites
      • Arab J Sci Eng, Volume 28, 2003, pp. 171–181
      • View Record in Scopus
        Citing articles (37)
      • [4]
      • A.A.A. Rashdi, S.M. Sapuan, M.M.H.M. Ahmad, A. Khalina
      • Combined effects of water absorption due to water immersion, soil buried and natural weather on mechanical properties of kenaf fibre unsaturated polyester composites (KFUPC)
      • Int J Mech Mater Eng, Volume 5, 2010, pp. 11–17
      • View Record in Scopus
        Citing articles (13)
      • [5]
      • M. Jawaid, H.P.S. Abdul Khalil, A. Abu Bakar
      • Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites
      • Mater Sci Eng A, Volume 528, 2011, pp. 5190–5195
      • Article
         | 
         PDF (1017 K)
         | 
        View Record in Scopus
        Citing articles (39)
      • [6]
      • S.K. Saw, G. Sarkhel, A. Choudhury
      • Effect of layering pattern on the physical, mechanical, and thermal properties of jute/bagasse hybrid fiber-reinforced epoxy novolac composites
      • Polym Compos, Volume 33, 2012, pp. 1824–1831
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (4)
      • [7]
      • M. Jawaid, H.P.S. Abdul Khalil, A. Hassan, R. Dungani, A. Hadiyane
      • Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites
      • Compos Part B Eng, Volume 45, 2013, pp. 619–624
      • Article
         | 
         PDF (803 K)
         | 
        View Record in Scopus
        Citing articles (46)
      • [8]
      • A. Atiqah, M. Maleque, M. Jawaid, M. Iqbal
      • Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications
      • Compos Part B Eng, Volume 56, 2014, pp. 68–73
      • Article
         | 
         PDF (2909 K)
         | 
        View Record in Scopus
        Citing articles (30)
      • [9]
      • S. Nunna, P.R. Chandra, S. Shrivastava, A. Jalan
      • A review on mechanical behavior of natural fiber based hybrid composites
      • J Reinf Plast Compos, Volume 31, 2012, pp. 759–769
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (48)
      • [10]
      • A.A.A. Rashdi, S.M. Sapuan, M.M.H.M. Ahmad, K. Abdan
      • Review of kenaf fiber reinforced polymer composites
      • Polimery, Volume 12, 2009, pp. 1–4
      • [11]
      • M.M. Davoodi, S.M. Sapuan, D. Ahmad, A. Ali, A. Khalina, M. Jonoobi
      • Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam
      • Mater Des, Volume 31, 2010, pp. 4927–4932
      • Article
         | 
         PDF (1378 K)
         | 
        View Record in Scopus
        Citing articles (69)
      • [12]
      • W.N. Wan Busu, H. Anuar, S.H. Ahmad, R. Rasid, N.A. Jamal
      • The mechanical and physical properties of thermoplastic natural rubber hybrid composites reinforced with Hibiscus cannabinus, L and short glass fiber
      • Polym Plast Technol Eng, Volume 49, 2010, pp. 1315–1322
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (10)
      • [13]
      • S. Jeyanthi, J.J. Rani
      • Improving mechanical properties by KENAF natural long fiber reinforced composite for automotive structures
      • J Appl Sci Eng, Volume 15, 2012, pp. 275–280
      • View Record in Scopus
        Citing articles (10)
      • [14]
      • H. Anuar, S.H. Ahmad, R. Rasid, A. Ahmad, W.N. Wan Busu
      • Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites
      • J Appl Polym Sci, Volume 107, Issue 6, 2008, pp. 4043–4052
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (25)
      • [15]
      • M. Zaki Abdullah, Y. Dan-mallam, P.S.M. Megat Yusoff
      • Effect of environmental degradation on mechanical properties of kenaf/polyethylene terephthalate fiber reinforced polyoxymethylene hybrid composite
      • Adv Mater Sci Eng, Volume 2013, 2013, pp. 1–8
      • Full Text via CrossRef
      • [16]
      • M. Jassal, S. Ghosh
      • Aramid fibers: an overview
      • Indian J Fibre Text Res, Volume 27, 2002, pp. 290–306
      • View Record in Scopus
        Citing articles (12)
      • [17]
      • R. Yahaya, S. Sapuan, M. Jawaid, Z. Leman, E. Zainudin
      • Mechanical performance of woven kenaf-Kevlar hybrid composites
      • J Reinf Plast Compos, Volume 33, 2014, pp. 2242–2254
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (6)
      • [18]
      • R. Yahaya, S.M. Sapuan, M. Jawaid, Z. Leman, E.S. Zainudin
      • Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites
      • Mater Des, Volume 63, 2014, pp. 775–782
      • Article
         | 
         PDF (2632 K)
         | 
        View Record in Scopus
        Citing articles (8)
      • [19]
      • Lu S.-H., Liang G.-Z., Zhou Z.-W., Li F.
      • Structure and properties of UHMWPE fiber/carbon fiber hybrid composites
      • J Appl Polym Sci, Volume 101, 2006, pp. 1880–1884
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (16)
      • [20]
      • N.R. Pearce, J. Summerscales, F. Guild
      • Improving the resin transfer moulding process for fabric-reinforced composites by modification of the fabric architecture
      • Compos Part A Appl Sci Manuf, Volume 31, 2000, pp. 1433–1441
      • Article
         | 
         PDF (471 K)
         | 
        View Record in Scopus
        Citing articles (22)
      • [21]
      • G.M.A. Khan, M. Terano, M.A. Gafur, M.S. Alam
      • Studies on the mechanical properties of woven jute fabric reinforced poly(l-lactic acid) composites
      • J King Saud Univ Eng Sci, 2013, doi:10.1016/j.jksues.2013.12.002
      • [22]
      • A.R. Azrin Hani, C.T. Seang, R. Ahmad, J.M. Mariatti
      • Impact and flexural properties of imbalance plain woven coir and kenaf composite
      • Appl Mech Mater, Volume 271–272, 2012, pp. 81–85
      • Full Text via CrossRef
      • [23]
      • L. Pothan, Y.W. Mai, S. Thomas, Li R.K.Y.
      • Tensile and flexural behavior of sisal fabric/polyester textile composites prepared by resin transfer molding technique
      • J Reinf Plast Compos, Volume 27, 2008, pp. 1847–1866
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (20)
      • [24]
      • M. Karahan, N. Karahan
      • Influence of weaving structure and hybridization on the tensile properties of woven carbon-epoxy composites
      • J Reinf Plast Compos, Volume 33, 2013, pp. 212–222
      • [25]
      • M. Karahan, N. Karahan
      • Effect of weaving structure and hybridization on the low-velocity impact behavior of woven carbon-epoxy composites
      • Fibres Text East Eur, Volume 3, 2014, pp. 109–115
      • View Record in Scopus
        Citing articles (3)
      • [26]
      • A. Alavudeen, N. Rajini, S. Karthikeyan, M. Thiruchitrambalam, N. Venkateshwaren
      • Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: effect of woven fabric and random orientation
      • Mater Des, Volume 66, 2015, pp. 246–257
      • Article
         | 
         PDF (5692 K)
         | 
        View Record in Scopus
        Citing articles (13)
      • [27]
      • A.Y. Smolin, E.V. Shilko, S.V. Astafurov, I.S. Konovalenko, S.P. Buyakova, S.G. Psakhie
      • Modeling mechanical behaviors of composites with various ratios of matrix–inclusion properties using movable cellular automaton method
      • Defence Technol, Volume 11, 2015, pp. 18–34
      • Article
         | 
         PDF (5508 K)
         | 
        View Record in Scopus
        Citing articles (2)
      • [28]
      • J.E. Little, Yuan X., M.I. Jones
      • Characterisation of voids in fibre reinforced composite materials
      • NDT E Int, Volume 46, 2012, pp. 122–127
      • Article
         | 
         PDF (897 K)
         | 
        View Record in Scopus
        Citing articles (16)
      • [29]
      • M. Jawaid, H.P.S. Abdul Khalil, P. Noorunnisa Khanam, A. Abu Bakar
      • Hybrid composites made from oil palm empty fruit bunches/jute fibres: water absorption, thickness swelling and density behaviours
      • J Polym Environ, Volume 19, 2010, pp. 106–109
      • [30]
      • D. Ray, J. Rout
      • Thermoset biocomposites
      • Natural fibers, biopolymers, and biocomposites, D. Ray, J. Rout, A.K. Mohanty, M. Misra, L.T. Drzal, 2005, Taylor & Francis Group, New York, p. 2005
      • [31]
      • H.P.S.A. Khalil, S. Hanida, Kang C.W., N.A.N. Fuaad
      • Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fiber (EFB)/Glass hybrid reinforced polyester composites
      • J Reinf Plast Compos, Volume 26, 2007, pp. 203–218
      • Full Text via CrossRef
      • [32]
      • H.P.S.A. Khalil, M. Jawaid, A.A. Bakar
      • Woven hybrid composites: water absorption and thickness swelling behaviours
      • BioResources, Volume 6, 2011, pp. 1043–1052
      • [33]
      • F. Ellyin, R. Maser
      • Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens
      • Compos Sci Technol, Volume 64, 2004, pp. 1863–1874
      • Article
         | 
         PDF (714 K)
         | 
        View Record in Scopus
        Citing articles (61)
      • [34]
      • R. Yahaya, S.M. Sapuan, M. Jawaid, Z. Leman, E.S. Zainudin
      • Effects of kenaf contents and fiber orientation on physical, mechanical, and morphological properties of hybrid laminated composites for vehicle spall liners
      • Polym Compos, Volume 36, Issue 8, 2015, pp. 1469–1476
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (3)
      • [35]
      • U.A. Khashaba, M.A. Seif
      • Effect of different loading conditions on the mechanical behavior of [0/±45/90]s woven composites
      • Compos Struct, Volume 74, 2006, pp. 440–448
      • Article
         | 
         PDF (469 K)
         | 
        View Record in Scopus
        Citing articles (21)
      • [36]
      • S.V. Lomov
      • Picture frame test of woven composite reinforcements with a full-field strain registration
      • Text Res J, Volume 76, 2006, pp. 243–252
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (61)
      • [37]
      • S. Shibata, Cao Y., I. Fukumoto
      • Press forming of short natural fiber-reinforced biodegradable resin: effects of fiber volume and length on flexural properties
      • Polym Test, Volume 24, 2005, pp. 1005–1011
      • Article
         | 
         PDF (471 K)
         | 
        View Record in Scopus
        Citing articles (67)
      • [38]
      • T.P. Sathishkumar, P. Navaneethakrishnan, S. Shankar
      • Tensile and flexural properties of snake grass natural fiber reinforced isophthalic polyester composites
      • Compos Sci Technol, Volume 72, 2012, pp. 1183–1190
      • Article
         | 
         PDF (1189 K)
         | 
        View Record in Scopus
        Citing articles (42)
      • [39]
      • P.-O. Hagstrand, F. Bonjour, J.-A.E. Månson
      • The influence of void content on the structural flexural performance of unidirectional glass fibre reinforced polypropylene composites
      • Compos Part A Appl Sci Manuf, Volume 36, 2005, pp. 705–714
      • Article
         | 
         PDF (695 K)
         | 
        View Record in Scopus
        Citing articles (54)
      • [40]
      • M.J.A. Van den Oever, H.L. Bos, K. Molenveld
      • Flax fibre physical structure and its effect on composite properties: impact strength and thermo-mechanical properties
      • Angew Makromol Chem, Volume 272, 1999, pp. 71–76
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (31)
      • [41]
      • Z. Salleh, M.N. Berhan, K.M. Hyie, D.H. Isaac, A. Material
      • Cold-pressed kenaf and fibreglass hybrid composites laminates: effect of fibre types
      • World Acad Sci Eng Technol, Volume 71, 2012, pp. 969–973
      • [42]
      • S. Alam, F. Habib, M. Irfan, W. Iqbal, K. Khalid
      • Effect of orientation of glass fiber on mechanical properties of GRP composites
      • J Chem Soc Pak, Volume 32, 2010, p. 265
      • View Record in Scopus
        Citing articles (4)
      • [43]
      • Yang C.-C., T. Ngo, P. Tran
      • Influences of weaving architectures on the impact resistance of multi-layer fabrics
      • Mater Des, Volume 85, 2015, pp. 282–295
      • Article
         | 
         PDF (3227 K)
         | 
        View Record in Scopus
        Citing articles (5)
      • [44]
      • B. McWilliams, Yu J., M. Pankow, C.-F. Yen
      • Ballistic impact behavior of woven ceramic fabric reinforced metal matrix composites
      • Int J Impact Eng, Volume 86, 2015, pp. 57–66
      • Article
         | 
         PDF (3533 K)
         | 
        View Record in Scopus
        Citing articles (1)
    • Peer review under responsibility of China Ordnance Society.
    • *
      Corresponding author. Tel.: +603 89466318.

    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S221491471500063X
    at August 18, 2016 No comments:
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
    Newer Posts Older Posts Home
    Subscribe to: Comments (Atom)

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...

    • Pengalaman bekerja sebagai kerani kilang.
      Assalamualaikum dan salam sejahtera chu olls.     Alhamdulillah sudah seminggu saya melalui pengalaman bermakna ini. Sebagai seorang pel...
    • MIDA- INDUSTRI BERASASKAN KAYU
      Industri berasaskan kayu di Malaysia terdiri daripada  Kayu bergergaji; Venir dan produk panel yang termasuk papan lapis dan produk ...
    • Advantages and Disadvantages of Fasting for Runners
      Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...
    • UKIRAN KAYU DALAM MASYARAKAT MELAYU
      Seni ukiran kayu di kalangan masyarakat Melayu bukan sahaja terdapat pada rumah-rumah tetapi penjelmaan dan penerapannya terdapat pada is...
    • Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia
      International Journal of Ecology Volume 2017 (2017), Article ID 3985631, 10 pages https://doi.org/10.1155/2017/3985631 Author Evgeny  ...
    • Diploma Teknologi Berasaskan Kayu
      LATARBELAKANG POLITEKNIK KOTA KINABALU Politeknik Kota Kinabalu merupakan politeknik yang ketujuh ditubuhkan oleh Kementerian Pendidikan...
    • DIPLOMA REKA BENTUK PERABUT
      Sijil Teknologi Diploma Rekabentuk Perabot Kod Kursus :  K18 ...
    • Motif, Corak dan Ragi Tenun Melayu Riau
      Author MELAYU Riau kaya dengan khazanah budayanya. Antaranya yang amat menonjol adalah motif ornamen Melayunya, yang banyak dipakai untuk ...
    • SISTEM PENGURUSAN HUTAN
      Polisi dan Strategi Untuk memastikan HSK diurus secara berkekalan, "Dasar dan Strategi Pengurusan Hutan untuk Semenanjung ...
    • 5 Jenama Foundation Terbaik, Beli Di Farmasi Je!
      Beberapa minggu sudah, penulis pernah mencadangkan beberapa jenama maskara terbaik yang mudah didapati pada harga berpatutan dari farmas...

    nuffnang ads

    Search This Blog

    Pages

    • Home

    About Me

    Unknown
    View my complete profile

    Blog Archive

    • ►  2018 (371)
      • ►  June (17)
        • ►  Jun 22 (8)
        • ►  Jun 12 (1)
        • ►  Jun 11 (2)
        • ►  Jun 05 (6)
      • ►  May (6)
        • ►  May 31 (6)
      • ►  April (75)
        • ►  Apr 30 (1)
        • ►  Apr 27 (1)
        • ►  Apr 26 (15)
        • ►  Apr 25 (10)
        • ►  Apr 24 (11)
        • ►  Apr 18 (2)
        • ►  Apr 12 (4)
        • ►  Apr 10 (5)
        • ►  Apr 09 (9)
        • ►  Apr 05 (17)
      • ►  March (65)
        • ►  Mar 27 (7)
        • ►  Mar 22 (2)
        • ►  Mar 20 (4)
        • ►  Mar 13 (14)
        • ►  Mar 12 (11)
        • ►  Mar 08 (7)
        • ►  Mar 06 (1)
        • ►  Mar 05 (1)
        • ►  Mar 01 (18)
      • ►  February (103)
        • ►  Feb 28 (25)
        • ►  Feb 27 (27)
        • ►  Feb 26 (10)
        • ►  Feb 20 (1)
        • ►  Feb 19 (9)
        • ►  Feb 09 (13)
        • ►  Feb 06 (6)
        • ►  Feb 05 (5)
        • ►  Feb 02 (7)
      • ►  January (105)
        • ►  Jan 25 (11)
        • ►  Jan 23 (5)
        • ►  Jan 16 (6)
        • ►  Jan 15 (9)
        • ►  Jan 14 (7)
        • ►  Jan 10 (1)
        • ►  Jan 09 (2)
        • ►  Jan 08 (4)
        • ►  Jan 04 (24)
        • ►  Jan 03 (2)
        • ►  Jan 02 (21)
        • ►  Jan 01 (13)
    • ►  2017 (6160)
      • ►  December (11)
        • ►  Dec 30 (11)
      • ►  November (31)
        • ►  Nov 26 (9)
        • ►  Nov 07 (8)
        • ►  Nov 06 (3)
        • ►  Nov 01 (11)
      • ►  October (345)
        • ►  Oct 31 (4)
        • ►  Oct 25 (42)
        • ►  Oct 24 (5)
        • ►  Oct 23 (15)
        • ►  Oct 22 (3)
        • ►  Oct 18 (7)
        • ►  Oct 17 (27)
        • ►  Oct 16 (14)
        • ►  Oct 15 (6)
        • ►  Oct 13 (18)
        • ►  Oct 12 (44)
        • ►  Oct 11 (57)
        • ►  Oct 09 (47)
        • ►  Oct 06 (14)
        • ►  Oct 05 (1)
        • ►  Oct 04 (13)
        • ►  Oct 03 (17)
        • ►  Oct 02 (11)
      • ►  September (186)
        • ►  Sept 29 (3)
        • ►  Sept 26 (7)
        • ►  Sept 25 (18)
        • ►  Sept 21 (29)
        • ►  Sept 20 (10)
        • ►  Sept 19 (11)
        • ►  Sept 18 (2)
        • ►  Sept 14 (19)
        • ►  Sept 13 (28)
        • ►  Sept 11 (3)
        • ►  Sept 10 (15)
        • ►  Sept 08 (5)
        • ►  Sept 06 (22)
        • ►  Sept 05 (14)
      • ►  August (158)
        • ►  Aug 29 (10)
        • ►  Aug 28 (73)
        • ►  Aug 27 (2)
        • ►  Aug 21 (4)
        • ►  Aug 18 (17)
        • ►  Aug 17 (4)
        • ►  Aug 14 (13)
        • ►  Aug 11 (5)
        • ►  Aug 10 (4)
        • ►  Aug 09 (7)
        • ►  Aug 08 (1)
        • ►  Aug 06 (3)
        • ►  Aug 04 (2)
        • ►  Aug 03 (13)
      • ►  July (290)
        • ►  Jul 26 (9)
        • ►  Jul 25 (7)
        • ►  Jul 24 (25)
        • ►  Jul 23 (5)
        • ►  Jul 21 (13)
        • ►  Jul 18 (19)
        • ►  Jul 17 (18)
        • ►  Jul 14 (17)
        • ►  Jul 13 (75)
        • ►  Jul 12 (10)
        • ►  Jul 11 (64)
        • ►  Jul 10 (26)
        • ►  Jul 09 (2)
      • ►  June (522)
        • ►  Jun 30 (1)
        • ►  Jun 27 (3)
        • ►  Jun 22 (13)
        • ►  Jun 21 (41)
        • ►  Jun 20 (3)
        • ►  Jun 19 (68)
        • ►  Jun 16 (33)
        • ►  Jun 15 (87)
        • ►  Jun 13 (25)
        • ►  Jun 12 (26)
        • ►  Jun 09 (20)
        • ►  Jun 08 (60)
        • ►  Jun 07 (54)
        • ►  Jun 06 (53)
        • ►  Jun 05 (35)
      • ►  May (684)
        • ►  May 31 (6)
        • ►  May 22 (3)
        • ►  May 21 (14)
        • ►  May 20 (12)
        • ►  May 19 (3)
        • ►  May 18 (26)
        • ►  May 17 (63)
        • ►  May 16 (27)
        • ►  May 15 (25)
        • ►  May 14 (16)
        • ►  May 07 (9)
        • ►  May 06 (26)
        • ►  May 05 (74)
        • ►  May 04 (126)
        • ►  May 03 (51)
        • ►  May 02 (153)
        • ►  May 01 (50)
      • ►  April (759)
        • ►  Apr 29 (56)
        • ►  Apr 28 (37)
        • ►  Apr 27 (67)
        • ►  Apr 26 (87)
        • ►  Apr 25 (6)
        • ►  Apr 10 (4)
        • ►  Apr 09 (5)
        • ►  Apr 08 (78)
        • ►  Apr 07 (57)
        • ►  Apr 06 (52)
        • ►  Apr 05 (53)
        • ►  Apr 04 (43)
        • ►  Apr 03 (94)
        • ►  Apr 02 (28)
        • ►  Apr 01 (92)
      • ►  March (1744)
        • ►  Mar 31 (90)
        • ►  Mar 30 (74)
        • ►  Mar 29 (58)
        • ►  Mar 28 (50)
        • ►  Mar 27 (95)
        • ►  Mar 26 (58)
        • ►  Mar 25 (98)
        • ►  Mar 24 (94)
        • ►  Mar 23 (77)
        • ►  Mar 22 (43)
        • ►  Mar 21 (54)
        • ►  Mar 20 (43)
        • ►  Mar 19 (88)
        • ►  Mar 18 (65)
        • ►  Mar 17 (63)
        • ►  Mar 16 (94)
        • ►  Mar 15 (79)
        • ►  Mar 14 (35)
        • ►  Mar 11 (10)
        • ►  Mar 10 (43)
        • ►  Mar 09 (40)
        • ►  Mar 08 (27)
        • ►  Mar 07 (40)
        • ►  Mar 06 (62)
        • ►  Mar 05 (48)
        • ►  Mar 04 (63)
        • ►  Mar 03 (54)
        • ►  Mar 02 (13)
        • ►  Mar 01 (86)
      • ►  February (715)
        • ►  Feb 28 (10)
        • ►  Feb 27 (61)
        • ►  Feb 26 (31)
        • ►  Feb 24 (22)
        • ►  Feb 23 (31)
        • ►  Feb 22 (42)
        • ►  Feb 21 (30)
        • ►  Feb 20 (42)
        • ►  Feb 19 (43)
        • ►  Feb 18 (46)
        • ►  Feb 17 (39)
        • ►  Feb 16 (39)
        • ►  Feb 15 (24)
        • ►  Feb 14 (54)
        • ►  Feb 13 (25)
        • ►  Feb 12 (78)
        • ►  Feb 10 (53)
        • ►  Feb 09 (22)
        • ►  Feb 01 (23)
      • ►  January (715)
        • ►  Jan 30 (25)
        • ►  Jan 28 (19)
        • ►  Jan 27 (36)
        • ►  Jan 26 (27)
        • ►  Jan 24 (27)
        • ►  Jan 22 (22)
        • ►  Jan 21 (58)
        • ►  Jan 20 (20)
        • ►  Jan 19 (30)
        • ►  Jan 18 (39)
        • ►  Jan 17 (26)
        • ►  Jan 16 (36)
        • ►  Jan 15 (62)
        • ►  Jan 14 (22)
        • ►  Jan 13 (20)
        • ►  Jan 12 (33)
        • ►  Jan 11 (32)
        • ►  Jan 10 (26)
        • ►  Jan 05 (11)
        • ►  Jan 04 (22)
        • ►  Jan 03 (35)
        • ►  Jan 02 (34)
        • ►  Jan 01 (53)
    • ▼  2016 (6885)
      • ►  December (986)
        • ►  Dec 31 (12)
        • ►  Dec 30 (23)
        • ►  Dec 29 (15)
        • ►  Dec 28 (29)
        • ►  Dec 27 (32)
        • ►  Dec 26 (29)
        • ►  Dec 25 (39)
        • ►  Dec 24 (43)
        • ►  Dec 23 (29)
        • ►  Dec 22 (28)
        • ►  Dec 21 (46)
        • ►  Dec 20 (28)
        • ►  Dec 19 (36)
        • ►  Dec 18 (14)
        • ►  Dec 17 (24)
        • ►  Dec 16 (10)
        • ►  Dec 15 (43)
        • ►  Dec 14 (55)
        • ►  Dec 13 (38)
        • ►  Dec 12 (45)
        • ►  Dec 11 (26)
        • ►  Dec 10 (48)
        • ►  Dec 09 (34)
        • ►  Dec 08 (22)
        • ►  Dec 07 (29)
        • ►  Dec 06 (15)
        • ►  Dec 05 (45)
        • ►  Dec 04 (38)
        • ►  Dec 03 (41)
        • ►  Dec 02 (41)
        • ►  Dec 01 (29)
      • ►  November (600)
        • ►  Nov 30 (38)
        • ►  Nov 29 (36)
        • ►  Nov 28 (43)
        • ►  Nov 27 (22)
        • ►  Nov 26 (27)
        • ►  Nov 25 (39)
        • ►  Nov 24 (27)
        • ►  Nov 23 (37)
        • ►  Nov 22 (21)
        • ►  Nov 21 (32)
        • ►  Nov 20 (20)
        • ►  Nov 19 (31)
        • ►  Nov 18 (34)
        • ►  Nov 17 (29)
        • ►  Nov 16 (21)
        • ►  Nov 15 (33)
        • ►  Nov 14 (16)
        • ►  Nov 13 (3)
        • ►  Nov 12 (3)
        • ►  Nov 11 (1)
        • ►  Nov 09 (2)
        • ►  Nov 07 (14)
        • ►  Nov 04 (16)
        • ►  Nov 03 (17)
        • ►  Nov 02 (23)
        • ►  Nov 01 (15)
      • ►  October (374)
        • ►  Oct 31 (15)
        • ►  Oct 30 (2)
        • ►  Oct 29 (4)
        • ►  Oct 28 (25)
        • ►  Oct 27 (19)
        • ►  Oct 26 (16)
        • ►  Oct 25 (11)
        • ►  Oct 24 (14)
        • ►  Oct 23 (12)
        • ►  Oct 21 (14)
        • ►  Oct 20 (19)
        • ►  Oct 19 (21)
        • ►  Oct 18 (17)
        • ►  Oct 17 (15)
        • ►  Oct 16 (20)
        • ►  Oct 15 (12)
        • ►  Oct 14 (11)
        • ►  Oct 13 (21)
        • ►  Oct 12 (13)
        • ►  Oct 11 (6)
        • ►  Oct 10 (12)
        • ►  Oct 09 (17)
        • ►  Oct 08 (10)
        • ►  Oct 07 (11)
        • ►  Oct 06 (19)
        • ►  Oct 05 (13)
        • ►  Oct 03 (5)
      • ►  September (406)
        • ►  Sept 29 (6)
        • ►  Sept 28 (2)
        • ►  Sept 27 (12)
        • ►  Sept 16 (20)
        • ►  Sept 15 (34)
        • ►  Sept 14 (39)
        • ►  Sept 13 (32)
        • ►  Sept 12 (36)
        • ►  Sept 11 (18)
        • ►  Sept 10 (16)
        • ►  Sept 07 (6)
        • ►  Sept 06 (26)
        • ►  Sept 05 (14)
        • ►  Sept 04 (44)
        • ►  Sept 03 (17)
        • ►  Sept 02 (38)
        • ►  Sept 01 (46)
      • ▼  August (777)
        • ►  Aug 31 (13)
        • ►  Aug 29 (22)
        • ►  Aug 28 (13)
        • ►  Aug 27 (26)
        • ►  Aug 26 (18)
        • ►  Aug 25 (14)
        • ►  Aug 24 (13)
        • ►  Aug 23 (22)
        • ►  Aug 22 (23)
        • ►  Aug 21 (20)
        • ►  Aug 20 (23)
        • ►  Aug 19 (13)
        • ▼  Aug 18 (31)
          • Bamboo fiber and its reinforced composites: struct...
          • Effect of fibre orientations on the mechanical pro...
          • Mechanical properties of recycled kenaf/polyethyle...
          • Time Effects on Morphology and Bonding Ability in ...
          • Kenaf Bast Fibers—Part I: Hermetical Alkali Digestion
          • Can You Lose Weight Drinking Protein Shakes to Rep...
          • Can Herbs Help You Get Rid of Ingrown Hair?
          • How to Get Rid of Ingrown Hairs on a Bikini Line
          • Comparative Biology of Tropical Trees: a Perspecti...
          • Community Structure of Wood-Decaying Basidiomycete...
          • Diversity of Putative Ectomycorrhizal Fungi in Pas...
          • Microhabitat Preference of Two Sympatric Scaphium ...
          • Synergistic effect of metal oxides on the flame re...
          • Synergistic flame-retardant effect of halloysite n...
          • 3a,8a-Dihy-droxy-1,3,3a,8a-tetra-hydro-indeno-[1,2...
          • 2-Methyl-5-nitro-1H-benzimidazole monohydrate.
          • 11H-Indeno-[1,2-b]quinoxalin-11-one.
          • Cholest-5-ene.
          • 3β-Chloro-cholest-5-en-7-one.
          • Redetermination of ethyl (3a-cis)-3a,8b-dihydr-oxy...
          • 2,3-Dimethyl-6-nitro-quinoxaline.
          • 3-(2-Amino-5-nitro-anilino)-5,5-dimethyl-cyclo-hex...
          • Phytochemical analysis, cytotoxic activity and con...
          • Solute diffusion into cell walls in solution-impre...
          • Thermography measurements and latent heat document...
          • Ionic liquid-mediated technology to produce cellul...
          • An advanced biomass gasification technology with i...
          • Structure and performance of Poly(vinyl alcohol)/w...
          • Lipton Green Tea Nutrition Facts
          • How to Use Turmeric for Hair Removal
          • Can Turmeric Benefit the Hair?
        • ►  Aug 17 (36)
        • ►  Aug 16 (17)
        • ►  Aug 15 (33)
        • ►  Aug 14 (24)
        • ►  Aug 13 (28)
        • ►  Aug 12 (28)
        • ►  Aug 11 (28)
        • ►  Aug 10 (59)
        • ►  Aug 09 (33)
        • ►  Aug 08 (39)
        • ►  Aug 07 (23)
        • ►  Aug 06 (36)
        • ►  Aug 05 (23)
        • ►  Aug 04 (25)
        • ►  Aug 03 (17)
        • ►  Aug 02 (26)
        • ►  Aug 01 (51)
      • ►  July (890)
        • ►  Jul 31 (27)
        • ►  Jul 30 (31)
        • ►  Jul 29 (29)
        • ►  Jul 28 (40)
        • ►  Jul 27 (32)
        • ►  Jul 26 (16)
        • ►  Jul 25 (5)
        • ►  Jul 24 (45)
        • ►  Jul 23 (16)
        • ►  Jul 22 (42)
        • ►  Jul 21 (11)
        • ►  Jul 20 (41)
        • ►  Jul 19 (31)
        • ►  Jul 18 (35)
        • ►  Jul 17 (41)
        • ►  Jul 16 (21)
        • ►  Jul 15 (23)
        • ►  Jul 14 (38)
        • ►  Jul 13 (49)
        • ►  Jul 12 (42)
        • ►  Jul 11 (25)
        • ►  Jul 10 (48)
        • ►  Jul 09 (33)
        • ►  Jul 08 (38)
        • ►  Jul 07 (19)
        • ►  Jul 06 (10)
        • ►  Jul 05 (14)
        • ►  Jul 04 (13)
        • ►  Jul 03 (20)
        • ►  Jul 02 (26)
        • ►  Jul 01 (29)
      • ►  June (1003)
        • ►  Jun 30 (29)
        • ►  Jun 29 (43)
        • ►  Jun 28 (27)
        • ►  Jun 27 (33)
        • ►  Jun 26 (49)
        • ►  Jun 25 (30)
        • ►  Jun 24 (32)
        • ►  Jun 23 (42)
        • ►  Jun 22 (38)
        • ►  Jun 21 (20)
        • ►  Jun 20 (30)
        • ►  Jun 19 (37)
        • ►  Jun 18 (15)
        • ►  Jun 17 (12)
        • ►  Jun 16 (52)
        • ►  Jun 15 (59)
        • ►  Jun 14 (49)
        • ►  Jun 13 (38)
        • ►  Jun 12 (39)
        • ►  Jun 11 (44)
        • ►  Jun 10 (22)
        • ►  Jun 09 (34)
        • ►  Jun 08 (39)
        • ►  Jun 07 (28)
        • ►  Jun 06 (38)
        • ►  Jun 05 (19)
        • ►  Jun 04 (20)
        • ►  Jun 03 (27)
        • ►  Jun 02 (27)
        • ►  Jun 01 (31)
      • ►  May (648)
        • ►  May 31 (32)
        • ►  May 30 (48)
        • ►  May 29 (46)
        • ►  May 28 (43)
        • ►  May 27 (19)
        • ►  May 26 (37)
        • ►  May 25 (29)
        • ►  May 24 (22)
        • ►  May 23 (23)
        • ►  May 22 (18)
        • ►  May 21 (18)
        • ►  May 20 (22)
        • ►  May 19 (28)
        • ►  May 18 (12)
        • ►  May 17 (24)
        • ►  May 16 (9)
        • ►  May 15 (18)
        • ►  May 14 (13)
        • ►  May 13 (16)
        • ►  May 12 (6)
        • ►  May 11 (15)
        • ►  May 10 (15)
        • ►  May 09 (25)
        • ►  May 08 (14)
        • ►  May 07 (15)
        • ►  May 06 (10)
        • ►  May 04 (21)
        • ►  May 03 (22)
        • ►  May 02 (9)
        • ►  May 01 (19)
      • ►  April (490)
        • ►  Apr 30 (7)
        • ►  Apr 29 (21)
        • ►  Apr 28 (19)
        • ►  Apr 27 (15)
        • ►  Apr 26 (12)
        • ►  Apr 25 (19)
        • ►  Apr 24 (13)
        • ►  Apr 23 (24)
        • ►  Apr 22 (24)
        • ►  Apr 21 (22)
        • ►  Apr 20 (19)
        • ►  Apr 19 (46)
        • ►  Apr 18 (24)
        • ►  Apr 17 (15)
        • ►  Apr 16 (19)
        • ►  Apr 15 (8)
        • ►  Apr 14 (19)
        • ►  Apr 13 (22)
        • ►  Apr 12 (18)
        • ►  Apr 11 (11)
        • ►  Apr 10 (13)
        • ►  Apr 09 (12)
        • ►  Apr 08 (12)
        • ►  Apr 07 (15)
        • ►  Apr 06 (16)
        • ►  Apr 05 (10)
        • ►  Apr 04 (8)
        • ►  Apr 03 (15)
        • ►  Apr 01 (12)
      • ►  March (445)
        • ►  Mar 31 (7)
        • ►  Mar 30 (10)
        • ►  Mar 29 (17)
        • ►  Mar 28 (15)
        • ►  Mar 27 (8)
        • ►  Mar 26 (11)
        • ►  Mar 25 (10)
        • ►  Mar 24 (9)
        • ►  Mar 23 (13)
        • ►  Mar 22 (9)
        • ►  Mar 21 (13)
        • ►  Mar 20 (9)
        • ►  Mar 19 (15)
        • ►  Mar 18 (14)
        • ►  Mar 17 (11)
        • ►  Mar 16 (15)
        • ►  Mar 15 (23)
        • ►  Mar 14 (26)
        • ►  Mar 13 (20)
        • ►  Mar 12 (14)
        • ►  Mar 11 (18)
        • ►  Mar 10 (27)
        • ►  Mar 09 (18)
        • ►  Mar 08 (25)
        • ►  Mar 07 (11)
        • ►  Mar 06 (15)
        • ►  Mar 05 (18)
        • ►  Mar 04 (9)
        • ►  Mar 03 (14)
        • ►  Mar 02 (7)
        • ►  Mar 01 (14)
      • ►  February (258)
        • ►  Feb 29 (22)
        • ►  Feb 28 (14)
        • ►  Feb 27 (12)
        • ►  Feb 26 (4)
        • ►  Feb 25 (17)
        • ►  Feb 24 (16)
        • ►  Feb 23 (16)
        • ►  Feb 22 (8)
        • ►  Feb 21 (23)
        • ►  Feb 20 (6)
        • ►  Feb 19 (5)
        • ►  Feb 18 (3)
        • ►  Feb 17 (9)
        • ►  Feb 16 (17)
        • ►  Feb 15 (20)
        • ►  Feb 14 (10)
        • ►  Feb 13 (17)
        • ►  Feb 11 (3)
        • ►  Feb 10 (1)
        • ►  Feb 08 (2)
        • ►  Feb 07 (5)
        • ►  Feb 05 (2)
        • ►  Feb 04 (10)
        • ►  Feb 03 (7)
        • ►  Feb 02 (1)
        • ►  Feb 01 (8)
      • ►  January (8)
        • ►  Jan 30 (4)
        • ►  Jan 10 (4)
    • ►  2013 (23)
      • ►  February (18)
        • ►  Feb 07 (1)
        • ►  Feb 06 (2)
        • ►  Feb 05 (8)
        • ►  Feb 04 (5)
        • ►  Feb 02 (1)
        • ►  Feb 01 (1)
      • ►  January (5)
        • ►  Jan 31 (4)
        • ►  Jan 30 (1)

    Report Abuse

    Follower

    Translate

    Total Pageviews

    nuffnang ads

    Nuffnang Ads

    nuffnang ads

    Nuffnang Ads

    Picture Window theme. Theme images by sndrk. Powered by Blogger.