Aboal, J. R., Arevalo, J. R., & Fernandez, A. (2005). Allometric relationships of different tree species and stand above ground biomass in the Gomera laurel forest (Canary Islands). Flora, 200, 264-274.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257(4), 1237-1246.
Araujo, T. M., Higuchi, N., & Junior, J. A. d. C. (1999). Comparison of formulae for biomass content determination in a tropical rain forest site in the state of Para, Brazil. Forest Ecology and Management, 117(1-3), 43-52.
Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Fiore, A. D., & Martínez, R. V. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545-562.
Banskota, A., Wynne, R., Johnson, P., & Emessiene, B. (2011). Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests. Annals of Forest Science, 1-10. doi:10.1007/s13595-011-0023-0
Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684-1694.
Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Cid Ferreira, C. A., & Victoria, R. A. (1995). Uncertainty in the biomass of Amazonian forests: An example from Rondônia, Brazil. Forest Ecology and Management, 75(1-3), 175-189.
Brown, S. (1997). Estimating biomass and biomass change of tropical forests: a primer. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116(3), 363-372.
Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35, 881-902.
CGIAR. (2008). Wood density database. Retrieved 15 January 2011, from http://www.worldagroforestry.org/sea/Products/AFDbases/WD/Index.htm
Chambers, J. Q., Santos, J. d., Ribeiro, R. J., & Higuchi, N. (2001). Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management, 152(1-3), 73-84.
Chave, J., Andalo, C., Brown, S., Cairns, M., Chambers, J., Eamus, D., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99.
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London, 03TB055D (on-line), 1-12.
Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., & Hubbell, S. P. (2003). Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 91(2), 240-252. doi: 10.1046/j.1365-2745.2003.00757.x
Chave, J., Riera, B., & Dubois, M.-A. (2001). Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology, 17(1), 79-96.
Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., & Ni, J. (2001). Measuring net primary production in forests: concepts and field methods. Ecological Applications, 11(2), 356-370.
Cole, T. G., & Ewel, J. J. (2006). Allometric equations for four valuable tropical tree species. Forest Ecology and Management, 229(1-3), 351-360.
Crow, T. R. (1978). Common regressions to estimate tree biomass in tropical stands. Forest Science, 24, 110-114.
Cunia, T. (1987). Error of forest inventory estimates: its main components. In E. H. Wharton & T. Cunia (Eds.), Estimating tree biomass regressions and their error, Northeastern Forest Experimental Station, Brooomall, Pennsylvania: USDA.
FAO. (2004). National Forest Inventory: Field manual template. Rome: FAO.
FAO. (2006). Global Forest Resources Assessment 2005: progress towards sustainable forest management FAO Forestry Paper: 147 (pp. pp. 350). Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
Fehrmann, L., & Kleinn, C. (2006). General considerations about the use of allometric equations for biomass estimation on the example of Norway spruce in central Europe. Forest Ecology and Management, 236(2-3), 412-421.
Foody, G. M., Cutler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., & Douglas, I. (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10(4), 379-387.
Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(045023), 1-13.
Goetz, S., Achard, F., Joosten, H., Kanamaru, H., Lehtonen, A., Menton, M., & Wattenbach, M. (2010). Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools Systematic Review No. 09-016 (previously SR77): Collaboration for Environmental Evidence.
Gower, S. T., Kucharik, C. J., & Norman, J. M. (1999). Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing of Environment, 70, 29-51.
Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., & Osaki, M. (2007). Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biology, 13(2), 412-425. doi:10.1111/j.1365-2486.2006.01301.x
Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2009). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences Discussions, 6(4), 7207-7230.
Hooijer, A., Page, S., Canadell, J. G., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5), 1505-1514.
Hooijer, A., Silvius, M., Wosten, H., & Page, S. (2006). PEAT-CO2: assessment of CO2 emissions from drained peatlands in SE Asia (pp. 41p.). Delft, the Netherlands: Delft Hydraulics Report QA 3943.
Houghton, R. A. (2005). Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6), 945-958. doi: 10.1111/j.1365-2486.2005.00955.x
Houghton, R. A., Lawrence, K. T., Hackler, J. L., & Brown, S. (2001). The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology, 7(7), 731-746. doi:10.1046/j.1365-2486.2001.00426.x
Istomo. (2002). Kandungan fosfor dan kalsium serta penyebarannya pada tanah dan tumbuhan hutan rawa gambut: studi kasus di Wilayah Bagian Kesatuan Pemangkuan Hutan Bagan, Kabupaten Rokan Hilir, Riau (PhD), Institut Pertanian Bogor, Bogor.
Istomo, Komar, T. E., Tata, M. H. L., Sumbayak, E. S. S., & Rahma, A. (2010). Evaluasi Sistem Silvikultur Hutan Rawa Gambut di Indonesia (in Indonesian). Bogor, Indonesia: ITTO-CITES Project and Pusat Penelitian dan Pengembangan Hutan dan Konservasi Alam, Kementerian Kehutanan
Jaenicke, J., Rieley, J. O., Mott, C., Kimman, P., & Siegert, F. (2008). Determination of the amount of carbon stored in Indonesian peatlands. Geoderma, 147(3-4), 151-158.
Jayaraman, K. (1999). A statistical manual for forestry research Forestry Research Support Programme for Asia and the Pacific (pp. 234). Bangkok, Thailand: Food and Agriculture Organization of the United Nations (FAO) Regional Office for Asia and the Pacific.
Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). National-scale biomass estimators for United States tree species. Forest Science, 49, 12-35.
Jepsen, M. R. (2006). Above-ground carbon stocks in tropical fallows, Sarawak, Malaysia. Forest Ecology and Management, 225(1-3), 287-295.
Kenzo, T., Furutani, R., Hattori, D., Kendawang, J., Tanaka, S., Sakurai, K., & Ninomiya, I. (2009). Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. Journal of Forest Research, 14(6), 365-372.
Kenzo, T., Ichie, T., Hattori, D., Itioka, T., Handa, C., Ohkubo, T., & Ninomiya, I. (2009). Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. Journal of Tropical Ecology, 25(04), 371-386. doi:10.1017/S0266467409006129
Ketterings, Q. M., Coe, R., van Noordwijk, M., Ambagau', Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1-3), 199-209.
Krisnawati, H., Adinugroho, W. C., & Imanuddin, R. (2012). Monograph Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia. Bogor, Indonesia: Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency, Ministry of Forestry.
Krisnawati, H., & Imanuddin, R. (2011). Carbon stock estimation of aboveground pool based on forest inventory (permanent sample plot) data: a case study in peat swamp forest in Jambi Workshop on Tropical Wetland Ecosystems of Indonesia: Science Needs to Address Climate Change Adaptation and Mitigation, 11-14 April 2011 (pp. 6pp). Sanur Beach Hotel, Bali, Indonesia: US Forest Service, FORDA Ministry of Forestry of Indonesia, CIFOR and USAID.
Labrecque, S., Fournier, R. A., Luther, J. E., & Piercey, D. (2006). A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. Forest Ecology and Management, 226(1-3), 129-144.
Losi, C. J., Siccama, T. G., Condit, R., & Morales, J. E. (2003). Analysis of alternative methods for estimating carbon stock in young tropical plantations. Forest Ecology and Management, 184(1-3), 355-368.
Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297-1328.
Lucas, R. M., Cronin, N., Lee, A., Moghaddam, M., Witte, C., & Tickle, P. (2006). Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sensing of Environment, 100(3), 407-425.
Ludang, Y., & Jaya, H. P. (2007). Biomass and carbon content in tropical forest of Central Kalimantan. Journal of Applied Sciences in Environmental Sanitation, 2(1), 7-12.
Maltby, E., & Immirzi, P. (1993). Carbon dynamics in peatlands and other wetland soils regional and global perspectives. Chemosphere, 27(6), 999-1023.
Návar, J. (2009). Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2), 427-434.
Nelson, B. W., Mesquita, R., Pereira, J. L. G., Garcia Aquino de Souza, S., Teixeira Batista, G., & Bovino Couto, L. (1999). Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117(1-3), 149-167.
Nogueira, E. M., Fearnside, P. M., & Nelson, B. W. (2008). Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management, 256(5), 990-996.
Nogueira, E. M., Fearnside, P. M., Nelson, B. W., Barbosa, R. I., & Keizer, E. W. H. (2008). Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 256(11), 1853-1867.
Page, S. E., Rieley, J. O., Shotyk, W., & Weiss, D. (1999). Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1391), 1885–1897.
Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 29-30.
Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45, 573-593.
Pilli, R., Anfodillo, T., & Carrer, M. (2006). Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management, 237(1-3), 583-593.
Posa, M. R. C., Wijedasa, L. S., & Corlett, R. T. (2011). Biodiversity and Conservation of Tropical Peat Swamp Forests. BioScience, 61(1), 49-57. doi:10.1525/bio.2011.61.1.10
Rieley, J. O. (2007). Tropical peatland -The amazing dual ecosystem: Co-existence and mutual benefit. In J. O. Rieley, C. J. Banks & B. Radjagukguk (Eds.), Carbon-climate-human interaction on tropical peatland. Proceedings of The International Symposium and Workshop on Tropical Peatland, (pp. 339). Yogyakarta, 27-29 August 2007: EU CARBOPEAT and RESTORPEAT Partnership, Gadjah Mada University, Indonesia and University of Leicester, United Kingdom.
Rieley, J. O., & Page, S. E. (Eds.). (2005). Wise use of tropical peatlands: focus on Southeast Asia: ALTERRA-Wageningen University and Research Centre and the EU INCO-STRAPEAT and RESTORPEAT Partnerships.
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, Early Edition, 1-6. doi:10.1073/pnas.1019576108
Saatchi, S. S., Houghton, R. A., Dos Santos Alvala, R. C., Soares, J. V., & Yu, Y. (2007). Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 13(4), 816-837. doi: 10.1111/j.1365-2486.2007.01323.x
Segura, M., & Kanninen, M. (2005). Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica. Biotropica, 37(1), 2-8. doi: 10.1111/j.1744-7429.2005.02027.x
Sierra, C. A., del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., & Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243(2-3), 299-309.
Snowdon, P. (1991). A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research, 21, 720-724.
Solichin, Lingenfelder, M., & Steinmann, K. H. (2011). Tier 3 biomass assessment for baseline emission in Merang peat swamp forest Workshop on Tropical Wetland Ecosystems of Indonesia: Science Needs to Address Climate Change Adaptation and Mitigation, 11-14 April 2011 (pp. 6pp). Sanur Beach Hotel, Bali, Indonesia: US Forest Service, FORDA Ministry of Forestry of Indonesia, CIFOR and USAID.
Sorensen, K. W. (1993). Indonesian peat swamp forests and their role as a carbon sink. Chemosphere, 27(6), 1065-1082.
SPSS Inc. (2005). SPSS Base 14.0 User's Guide. Chicago, IL: SPSS Inc.
Tan, A., Hutabarat, J., & Tjawikrama, D. (2011). Above ground biomass content on Sungai Putri peatland forest, West Kalimantan-Indonesia Workshop on Tropical Wetland Ecosystems of Indonesia: Science Needs to Address Climate Change Adaptation and Mitigation, 11-14 April 2011 (pp. 6pp). Sanur Beach Hotel, Bali, Indonesia: US Forest Service, FORDA Ministry of Forestry of Indonesia, CIFOR and USAID.
Tawaraya, K., Takaya, Y., Turjaman, M., Tuah, S. J., Limin, S. H., Tamai, Y., & Osaki, M. (2003). Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. Forest Ecology and Management, 182(1-3), 381-386.
Ter-Mikaelian, M. T., & Korzukhin, M. D. (1997). Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 97(1), 1-24.
Uryu, Y., Mott, C., Foead, N., Yulianto, K., Budiman, A., Setiabudi, & Stuwe, M. (2008). Deforestation, Forest Degradation, Biodiversity Loss and CO2 Emissions in Riau, Sumatra, Indonesia. Jakarta, Indonesia: WWF Indonesia Technical Report.
Verwer, C. C., & Meer, P. J. v. d. (2010). Carbon pools in tropical peat forest - Toward a reference value for forest biomass carbon in relatively undisturbed peat swamp forests in Southeast Asia (pp. 67pp). Wageningen, The Netherlands: Alterra, Alterra-report 2108.
Wahyunto, Dariah, A., & Agus, F. (2010). Distribution, Properties, and Carbon Stock of Indonesian Peatland. In Z.-S. Chen & F. Agus (Eds.), Proceeding of International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries, Bogor, Indonesia, September 28-29, 2010, (pp. 187-204). Bogor, Indonesia: Indonesian Soil Research Institute, Indonesia, Food & Fertilizer Technology Center, Taiwan and National Institute for Agro-Environmental Sceinces, Japan.
Wahyunto, Heryanto, B., Bekti, H., & Widiastuti, F. (2006). Peta-peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Papua/Maps of Peatlands Distribution, Area and Carbon Content in Papua, 2000-2001 (in Indonesian). Bogor, Indonesia: Wetlands International-Indonesia Programme and Wildlife Habitat Canada (WHC).
Wahyunto, Ritung, S., & Subagjo, H. (2003). Peta Luas Sebaran Lahan Gambut dan Kandungan Karbon di Pulau Sumatera/Maps of Area of Peatlands Distribution and Carbon Content in Sumatera, 1990-2002 (in Indonesian). Bogor, Indonesia: Wetlands International-Indonesia Programme and Wildlife Habitat Canada (WHC).
Wahyunto, Ritung, S., & Subagjo, H. (2004). Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Pulau Kalimantan/Maps of Peatlands Distribution, Area and Carbon Content in Kalimantan, 2000-2002 (in Indonesian). Bogor, Indonesia: Wetlands International-Indonesia Programme and Wildlife Habitat Canada (WHC).
Wahyunto, Ritung, S., Suparto, & Subagjo, H. (2005). Sebaran Gambut dan Kandungan Karbon di Sumatera dan Kalimantan. Bogor, Indonesia: Climate Change, Forests and Peatlands in Indonesia Project. Wetlands International-Indonesia Programme and Wildlife Habitat Canada.
Wahyunto, & Suryadiputra, I. N. N. (2008). Peatland Distribution in Sumatra and Kalimantan - Explanation of its data sets including source of information, accuracy, data constraints and gaps (pp. 64pp). Bogor, Indonesia: Wetlands International - Indonesia Programme.
Wang, C. (2006). Biomass allometric equations for 10 co-occuring tree species in Chinese temperate forests. Forest Ecology and Management, 222, 9-16.
Wijaya, A., Kusnadi, S., Gloaguen, R., & Heilmeier, H. (2010). Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS. Journal of Forestry Research, 21(1), 1-12. doi: 10.1007/s11676-010-0001-7
Wösten, J. H. M., Berg, J. V. D., Van Eijk, P., Gevers, G. J. M., Giesen, W. B. J. T., Hooijer, A., & Wibisono, I. T. (2006). Interrelationships between Hydrology and Ecology in Fire Degraded Tropical Peat Swamp Forests. International Journal of Water Resources Development, 22(1), 157-174.
Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O., & Limin, S. H. (2008). Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA, 73(2), 212-224.
Yamakura, T., Hagihara, A., Sukardjo, S., & Ogawa, H. (1986). Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Plant Ecology, 68(2), 71-82.
Zianis, D. (2008). Predicting mean aboveground forest biomass and its associated variance. Forest Ecology and Management, 256(6), 1400-1407.
Zianis, D., & Mencuccini, M. (2004). On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187(2-3), 311-332.
Zianis, D., Muukkonen, P., Makipaa, R., & Mencuccini, M. (2005). Biomass and stem volume equations for tree species in Europe: The Finnish Society of Forest Science, The Finnish Forest Research Institute.