Everything About Wood

Find the information such as human life, natural resource,agriculture,forestry, biotechnology, biodiversity, wood and non-wood materials.

Blog List

Thursday, 30 June 2016

Real-Life Holodeck? 'Star Trek' Tech Uses VR to Solve Global Problems

Author Bio
Edd Gent
Edd Gent, Live Science Contributor
Edd Gent is a British freelance science writer now living in India. His main interests are the wackier fringes of computer science, engineering, bioscience and science policy. Edd has a Bachelor of Arts degree in Politics and International Relations and is an NCTJ qualified senior reporter. In his spare time he likes to go rock climbing and explore his newly adopted home.




Real-Life Holodeck? 'Star Trek' Tech Uses VR to Solve Global Problems
Researchers at New York University are designing an immersive virtual-reality environment inspired by the fictional Holodeck in the "Star Trek" TV series.
Credit: Burleson et al./NYU

On the cult sci-fi TV show "Star Trek," crewmembers aboard the USS Enterprise could explore simulated environments or participate in interactive virtual experiences — anything from walking around lush forests to trying to solve a Sherlock Holmes-style mystery — as a way to mentally escape the confines of the starship or take a break from daily activities.
While the fictional Holodeck from the hit series was mainly used by the "Star Trek" characters for recreational purposes, could such an immersive virtual-reality (VR) environment help people tackle global problems like climate change or drug policy? Researchers at New York University (NYU) think so, and they are designing their own version of the technology to create a cyberlearning environment of the future.
Winslow Burleson, the project's leader and an associate professor focusing on educational technology at NYU, thinks a network of internet-connected Holodecks could allow people to crowdsource solutions to intractable societal problems. [Science Fact of Fiction? The Plausibility of 10 Sci-Fi Concepts]
The technology could enable people across the globe to create and participate in detailed simulations for research and collaborative learning, even allowing them to explore virtual scenarios to help find better ways of tackling communal challenges, he said.
"The future is moving from today's approach of trying to teach you who we think you should become, to a capacity for you to explore as a learner throughout your life who you are and who you want to be," Burleson told Live Science.
"I see that happening both at the individual level and at a societal level," he said. "If we can envisage the kinds of worlds that we want to explore and potentially live in, we can then use these Holodecks as collaborative sense-making tools to understand our interactions and impacts and use that to evolve our societies."

'Star Trek'-inspired tech

The NYU Experiential Super Computer, nicknamed the Holodeck, will combine VR technology and touch-based controls and feedback with computers that can simulate in real-time everything from environments to social situations, or even visualizations of scientific problems, the researchers said.
The system will be able to track users' movements and even their mental states via physiological cues like sweating or the pitch of their voices, Burleson said. This will help personalize their experiences, he added.
And as people use the Holodeck, they will be guided through their learning by robotic and virtual learning assistants, according to the researchers. The system will even feature 3D printing technology so that people can rapidly create physical prototypes of things they're working on, they said.
This kind of immersive virtual experience is now possible, thanks to the rapid advances currently being made in VR technology, largely fueled by the gaming industry. Burleson said his group has already made significant progress with several of the component technologies. [Beyond Gaming: 10 Other Fascinating Uses for Virtual-Reality Tech]
For example, the scientists have already demonstrated that HD camera arrays can capture the positioning of all users and physical objects in a prototype Holodeck and use this to position them in a virtual scene shown through VR goggles in real time. The NYU researchers have also created a 3D sound system that can record and recreate accurate simulations of acoustic spaces, Burleson said.
Members of the team have worked with NASA and the Exploratorium, the San Francisco-based cyberlearning museum, to design robotic and virtual assistants for both cyberlearning and remote planetary exploration.
The researchers have also partnered with a Boston-based startup called Humanyze, which creates high-tech badges packed with sensors that can track people's movement, social interactions and even speech dynamics.

Fact vs. fiction

But the researchers still have a ways to go before they can create a working prototype, Burleson said. They are currently focused on setting up an infrastructure that will enable them to combine these various parts into a coherent whole and make it easy for users to share information or even contribute to the project with new tools and features, he added.
"The work we're doing now is to fuse these components into one overarching architecture," Burleson said. "It's the difference between an individual knife for a specialized task and a Swiss army knife."
The use of virtual worlds to tackle real-world problems is already an active domain of research that even has its own peer-reviewed academic publication — the Journal of Virtual Worlds Research.
Games like "World of Warcraft" and "Second Life" have been used by researchers to investigate everything from  psychology to the governance of virtual universes. But the more complex and customizable virtual worlds that would be enabled by the Holodeck should make it possible to tackle larger and more complex problems, Burleson said.
"It enables a process of understanding how we want to live, what the trade-offs are, what the possibilities are, as individuals and as a society," he said. "That lets you make more informed decisions and more agile decisions."


Original article on Live Science.


For further information log on website :
http://www.livescience.com/55228-star-trek-inspired-holodeck.html
at June 30, 2016 No comments:
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

Breast Cancer Gene' BRCA1 Linked to Aggressive Uterine Cancer

Sara G. Miller
Sara G. Miller, Staff Writer
Sara is a staff writer for Live Science, covering health. She grew up outside of Philadelphia and studied biology at Hamilton College in upstate New York. When she's not writing, she can be found at the library, checking out a big stack of books. 



'Breast Cancer Gene' BRCA1 Linked to Aggressive Uterine Cancer  
Credit: Sebastian Kaulitzki | Shutterstock.com

Mutations in women's BRCA genes, which are linked to both breast cancer and ovarian cancer, may also increase their risk of developing a particularly deadly form of uterine cancer, a new study finds.
The BRCA1 and BRCA2 genesare sometimes referred to as the "breast cancer genes" because women who have a mutation in one or both of these genes face a much greater risk of developing breast and/or ovarian cancer than women without mutations in these genes.
But previous studies have also suggested that women with a BRCA1 or BRCA2 mutation may also be more likely to develop a type of uterine cancer called uterine serous carcinoma, said Dr. Noah Kauff, director of clinical cancer genetics at the Duke Cancer Institute in North Carolina and the senior author of the new
Uterine serous carcinomas make up about 10 percent of all uterine cancers, Kauff told Live Science. However, these cancers account for nearly half of all deaths from uterine cancer, he said. "These are aggressive cancers," he added.
The researchers looked at data on more than 1,000 women who tested positive for either the BRCA1 or BRCA2 mutation, according to the study, published today (June 30) in the journal JAMA Oncology. All of the women in the study underwent preventive surgery to remove their ovaries and fallopian tubes. Over a follow-up period of seven to 13 years, eight of the women developed uterine cancer, including five who developed uterine serous carcinoma, the researchers found.
Although that number may seem small, it is significantly higher than the number of cases the researchers expected, based on the known rates of this type of cancer.
Of the five cases of uterine serous carcinoma that actually occurred, four were in women with the BRCA1 mutation.
So although it was a small number of cases, it was 22 times greater than the number the researchers expected, making it highly unlikely to be a chance event, Kauff said.  
The researchers also obtained tissue samples from three of the uterine serous carcinomas, all from women with BRCA1 mutations. When they analyzed the samples, they found that in all three cases, there were problems with the protein that the BRCA1 gene encodes in cells.
The study suggests that the BRCA1 mutation, in particular, is linked to an increased risk of uterine serous carcinoma, Kauff said.
Given these findings, Kauff said he believes doctors should speak to women with BRCA mutations about potentially having surgery to remove the uterus, in addition to the typical procedure that is suggested as a preventive measure, which involves removing the ovaries and the fallopian tubes. Although the additional procedure comes with additional risk to the patient, in some cases, the risk of developing such a deadly cancer would be greater, he said.
Several other oncologists who wrote an editorial, published alongside the study in the same journal, agreed.
While the study "suffers from a small number of cases," the findings add to the literature linking the BRCA1 mutation, in particular, with a small risk of uterine serous carcinoma, Dr. Ronald Alvarez and his colleagues wrote in the editorial. Alvarez is a gynecologic oncologist at the University of Alabama at Birmingham School of Medicine.
"Perhaps it is time to consider that the line for risk-reducing gynecologic surgery in patients with BRCA mutations not stop at the ovaries and fallopian tubes," they wrote. For certain women, a hysterectomy could also be performed with minimal added risk, they wrote.
Still, more studies are needed to determine how beneficial it would be for women with a BRCA mutation to also undergo a hysterectomy, they said. [The 10 Deadliest Cancers and Why There's No Cure]

BRCA mysteries

Not all women with BRCA mutations develop cancer, Kauff said. "This is a hugely active area of research," he said.
And doctors would prefer an alternative to surgery for women with these mutations. But because there aren't effective ways to screen women for many gynecological cancers, preventive surgery is often the best option, he said. 
In the future, scientists hope to find biomarkers, or the presence of certain molecules in the body, that can help predict who will develop cancer, he said.
BRCA mutations have also been linked to other cancers, including pancreatic cancer in men and women, and prostate and breast cancers in men, Kauff said. However, breast cancer and gynecological cancers in women are the most common types of cancer linked to the gene, he said.
Why cancer is more likely in these locations than in others, however, is a big unknown, Kauff said. Because the BRCA mutation is inherited, those who carry a mutation have it in every cell in their body, he said.
Why the mutation seems to preferentially affect certain cells needs to be determined, he said. 
Originally published on Live Science.

For further information log on website :
http://www.livescience.com/55246-brca-gene-breast-uterine-cancer.html
at June 30, 2016 No comments:
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

Neural circuits underlying mother’s voice perception predict social communication abilities in children

Author
  1. Daniel A. Abramsa,1, 
  2. Tianwen Chena, 
  3. Paola Odriozolaa, 
  4. Katherine M. Chenga, 
  5. Amanda E.Bakera, 
  6. Aarthi Padmanabhana, 
  7. Srikanth Ryalia, 
  8. John Kochalkaa, 
  9. Carl Feinsteina, and 
  10. Vinod Menona,b,c,1
Author Affiliations
  1. Edited by Michael I. Posner, University of Oregon, Eugene, OR, and approved April 1, 2016 (received for review February 24, 2016)

Significance

The human voice provides a wealth of social information, including who is speaking. A salient voice in a child’s life is mother's voice, which guides social function during development. Here we identify brain circuits that are selectively engaged in children by their mother’s voice and show that this brain activity predicts social communication abilities. Nonsense words produced by mother activate multiple brain systems, including reward, emotion, and face-processing centers, reflecting how widely mother’s voice is broadcast throughout a child’s brain. Importantly, this activity provides a neural fingerprint of children’s social communication abilities. This approach provides a template for investigating social function in clinical disorders, e.g., autism, in which perception of biologically salient voices may be impaired.

Abstract

The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child’s life is mother's voice: Infants discriminate their mother’s voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother’s voice or whether this brain activity is related to children’s social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (<1 s) nonsense words produced by their biological mother and two female control voices and explored relationships between speech-evoked neural activity and social function. Compared to female control voices, mother’s voice elicited greater activity in primary auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother’s voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired.


For further information log on website :
http://www.pnas.org/content/113/22/6295
at June 30, 2016 No comments:
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion

Published Date
April 2016, Vol.28(2):143–151, doi:10.1016/j.jksus.2015.08.002
Open Access, Creative Commons license, Funding information
Original article

Title 

Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion

  • Author 
  • Olorunnisola Kola Saheed
  • Parveen Jamal ,,
  • Mohammed Ismail Abdul Karim
  • Md. Zahangir Alam
  • Suleyman Aremu Muyibi
  • Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. BOX 10, 50728 Kuala Lumpur, Malaysia
Received 13 February 2015. Accepted 3 August 2015. Available online 11 August 2015.

Abstract
The present generation of nutrient rich waste streams within the food and hospitality industry is inevitable and remained a matter of concern to stakeholders. Three white rot fungal strains were cultivated under submerged state bioconversion (SmB). Fermentable sugar conversion efficiency, biomass production and substrate utilization constant were indicators used to measure the success of the process. The substrates – banana peel (Bp), pineapple peel (PAp) and papaya peel (Pp) were prepared in wet and dried forms as substrates. Phanerochaete chrysosporium (P. chrysosporium), Panus tigrinus M609RQY, and RO209RQY were cultivated on sole fruit wastes and their composites. All fungal strains produced profound biomass on dry sole wet substrates, but wet composite substrates gave improved results. P. tigrinus RO209RQY was the most efficient in sugar conversion (99.6%) on sole substrates while P. tigrinus M609RQY was efficient on composite substrates. Elevated substrate utilization constant (Ku) and biomass production heralded wet composite substrates. P. chrysosporium was the most performing fungal strain for biomass production, while PApBp was the best composite substrate.

Abbreviations
  • Bp, banana peel
  • PAp, pineapple peel
  • Pp, papaya peel
  • SmB, submerged state bioconversion
  • WRF, white rot fungi
  • TOS, total soluble sugar
  • TRS, total reducing sugar.

  • Keywords
  • Substrates
  • Biomass
  • Fermentable
  • Bioconversion
  • Phanerochaete chrysosporium
  • Panus tigrinus

  • 1 Introduction

    Improved fruit and vegetable production through efficient agricultural practices mobilizes huge investments in fruit and vegetable processing across the world. Banana, pineapple and papaya are among the most widely acceptable fruits planted on commercial level worldwide (Jamal et al., 2012). Waste generation through these fruits is on the increase due to sustained surge in world population, improved economic growth in developing nations and improved access to nutrition education in high fruit producing countries.
    Wastes emanating from aforementioned fruits include peels, pulp and seeds that constitute about 40% of the total mass of each fruit. The majority of these waste materials is often improperly disposed, hence constitute huge environmental disorders (Essien et al., 2005 and Lim et al., 2010). Fruit waste dumping sites provide necessary impetus for vectors, pathogenic bacteria and yeast to thrive. A popular approach to mitigating fruit waste poor handling is landfill and incineration; these methods orchestrate an acute air pollution problem by generating massive leachates that contaminate ground water and destroy aquatic lives (Ali et al., 2014 and Taskin et al., 2010).
    Banana peel (Bp), pineapple peel (PAp) and papaya peel (Pp) are major wastes generated by fruit processing and agro-allied industries (Rasu Jayabalan et al., 2010). These wastes contain simple and complex sugars that are metabolizable by microorganisms through secretion of extracellular products (Saheed et al., 2013). Fruit peels, which constitute a huge part of the waste streams, provide anchorage for filamentous fungi during bioconversion process (Essien et al., 2005). Bioconversion of single fruit waste is a common practice in valorization of fruit peels. Pineapple waste, palm tree waste and cassava waste have received attention for their conversion to bio-ethanol, biogas and animal feed (Alam et al., 2005, Dhanasekaran et al., 2011and Tijani et al., 2012). Designing treatment schemes for specific agricultural residue limits efficiency of waste collection and prolong treatment period. Therefore, adoption of a method that accommodates several fruit wastes is highly robust, cheap and realistic in ameliorating impediments associated with fruit waste disposal (Aggelopoulos et al., 2014). The cultivation of microbial cells (bacteria, yeast, and fungi) that converts fruit wastes into value added products such as biomass that can serve as animal feed supplement is a unique approach.
    White rot fungi (WRF) – a class of filamentous fungi - are efficacious in valorizing cellulosic fruit wastes through degradation of complex carbohydrates in recalcitrant agro-residues (Ruqayyah et al., 2013). Several WRF used as edibles, contain essential micronutrients and amino acids at concentrations required for animal health and growth. Their biochemical mechanism of augmenting organic residues involves secretion of lignolytic, amylolytic and other hydrolytic enzymes (Cellulases, Amylases, Lipases etc.) into the fermentation broth during growth to facilitate breakdown of cellulose, starch and lignin in the fruit residues (Sanjay Kumar and Sarkar, 2011). A direct consequence of enzyme secretion is the development of fungal biomass that contains protein, fat and essential amino acids useful for supplementing ruminant and monogastric animal feed (Dhanasekaran et al., 2011 and Rasu Jayabalan et al., 2010).
    The profile of soluble and reduced carbohydrate content of fruit wastes metabolized by WRF during the bioconversion process is imperative to measure the efficiency of the biochemical process but rarely investigated. Determination of carbon source consumption pattern of fungal cells prior to products synthesis is imperative for measuring opportunities offered by the method (Qureshi et al., 2014). Therefore, this investigation elucidates, the performance of WRF on wet and dried forms of Bp, PAp and Pp. The study also covered the performance of composite substrates developed from the three peels. Parameters compared between individual peel substrate and composites include WRF biomass production, substrate (sugar) conversion efficiency and substrate utilization constant.

    2 Materials and methods

    2.1 Fungal strains and cultivation

    Three white rot fungi comprising two locally isolated Panus tigrinus strains RO209RQY and M609RQY (IMI 398363, CABI Europe-UK) (Polyporales polyporaceae) and laboratory stock of Phanerochaete chrysosporium Burdsall, teleomorph (ATCC 20696) (P. chrysosporium) were selected to carry out bioconversion process. RO209RQY (RO2); and M609RQY (M6) were cultivated on malt extract agar (MEA, Merck, Germany) for 7 days at 30 °C while P. chrysosporium was cultivated on potato dextrose agar (PDA, Merck, Germany) for 7 days at 30 °C. Each strain was sub-cultured every fortnight.

    2.2 Substrate collection and preparation

    Fresh banana (Musa sapientum) peels, pineapple (Ananas cosmos) peels and papaya (Carica papaya) peels were collected from fruit processors within the Gombak, Selangor, Malaysia area (Selangor, West Malaysia). The peels were thoroughly washed with tap water to remove attached foreign materials. Wet substrate contained a mixture of one-part peels and one-part distilled water (1:1) and blended for 5 min. 2 mm screen was used to sieve the resulting slurry before being stored at −20 °C for subsequent use. Fruit peels needed in dried form were dehydrated at 60 °C for two days immediately after cleaning to stop destructive microorganism. The peels were ground, sieved to 2 mm particle size and stored in an airtight container for subsequent use, while ungrounded ones were kept at room temperature in airtight plastic bags. Composite forms of dry and wet substrates were prepared by mixing respective peel combination in ratio 1:1:1.

    2.3 Determination of total soluble sugar (TOS) and reducing sugar

    Total soluble sugar concentration of fruit peel samples before and after bioconversion was determined by using phenol sulfuric acid (Dubois et al., 1956). For reducing sugar of fruit peel samples before and after bioconversion, aqueous extractions of reducing sugar from banana peel, pineapple peel and papaya peel were done in a 50 ml stoppered conical flask containing air-dried peels for dry sample and slurry for wet sample. 10 ml of 0.2 (mol/L) of disodium hydrogen phosphate/0.1 (mol/L) of citrate buffer (pH 4.8) was added before centrifugation was performed. Reducing sugar of the supernatant was determined by the Miller method using dinotrosylsalicylic acid reagent (DNS) (Miller, 1959).

    2.4 Fungal biomass determination, substrate utilization constant and microbial efficiency determination

    In order to determine the amount of white rot fungi biomass produced, after bioconversion process, all the contents of the Erlenmeyer flasks were first sieved with screens in such a way that unconverted fibrous fruit strands and residual soluble and reducing sugars were removed. The residue (fungal biomass) was gently washed with distilled water and transferred to pre-weighed whatman No. 1 filter paper (Sigma–Aldrich) (Omar and Sabry, 1991). The filter paper content was dried and total biomass produced was determined by calculating the weight difference before and after drying (Eq. (1))
    equation1
    W1: weight of pre-dried filter paper; W2: weight of dried biomass and filter paper.
    Substrate utilization constant of proportionality (Ku) was obtained with the assumption that edible fungal biomass production is inversely proportional to substrate sugar metabolism in a batch processing; the mathematical expression for determining the constant was given (Eq. (2)):
    equation2
    Ku: substrate sugar utilization constant; B1: initial fungal biomass; B2: final fungal biomass; S1: initial substrate sugar content; S2: final substrate sugar content.
    The efficiency of each fungus in converting metabolizable sugar in the substrate to biomass over the 7-day bioconversion period was calculated from Eq. (3) below:
    equation3
    Io: initial amount metabolizable sugar; If: final amount metabolizable sugar.

    2.5 Inoculum preparation and submerged state bioconversion (SmB)

    Inoculums were prepared by using 25 ml of sterilized distilled water to wash each petri dish of 7 day old fungal mycelium by gently scratching the agar plate surface with L-shaped rod and stored at 4 °C. Submerged state bioconversion was carried out in 250 ml Erlenmeyer flasks comprising 2% (1 g) substrate (solid particles of wet and dry substrates were equalized by determining their moisture content prior to bioconversion) and 2% (1 ml) fungal inoculum. The conversion media contained 0.8 g/L KH2PO4, 1.5 g/L (NH4)2SO4, 0.45 g/L MgSO4 and 0.05 g/L MnSO4 and distilled water was added to make 50 ml working volume. The flasks were previously autoclaved at 121 °C for 15 min and cooled before inoculation. Samples were transferred to an incubator shaker (Lab companion model SK-300) at 150 rpm and 30 °C cultivation temperature. Fungal biomass was separated and measured after 7 day incubation. All experiments were undertaken in triplicate to minimize experimental error.

    2.6 Statistical analysis of data

    Analysis of variance (ANOVA) covering single and multi-factors involved in the treatments; Post-hoc t-test (to identify the significance level where ANOVA was previously significant at p < 0.05) was performed. Statistical analysis was implemented in Microsoft excel 2010 version using data analysis add-on.

    3 Result and discussion

    3.1 Fungal biomass production on individual fruit peels

    In the process of biomass production on wet substrates, P. chrysosporium produced the highest biomass when cultivated on wet Bp (Table 1). On wet Bp, biomass production by P. chrysosporium was significantly different (p < 0.05) compared with M6; similar statistical difference existed between M6 and RO2. The maximum fungal biomass for M6 and RO2 were on Pp at no significant difference between the two microbes; same trend was recorded on PAp. Significant difference was recorded between P. chrysosporium and RO2 on PAp and Pp. However, P. chrysosporiumproduced the least biomass at significant levels compared to other two microbes on Pp.
    Table 1. Fungal biomass production on sole substrate.
    SubstratePC (g/L)
    M6 (g/L)
    RO2 (g/L)
    Wet subDry subWet subDry subWet subDry sub
    Bp15.60 ± 0.07ax17.40 ± 0.05b1x12.00 ± 0.13c23.60 ± 0.13d115.40 ± 0.25e24.40 ± 0.25f1
    PAp9.40 ± 0.02a15.00 ± 0.03b215.80 ± 0.05c15.40 ± 0.06d215.00 ± 0.03e19.60 ± 0.07f2
    Pp15.40 ± 0.03ax15.00 ± 0.03b2x17.80 ± 0.08c13.20 ± 0.06d217.80 ± 0.07e16.80 ± 0.04f3
    a,b,c,d,e,f: values with different superscripts in row are significantly different at p < 0.05.
    1,2,3: values with different superscripts in column are significantly different at p < 0.05.
    Wet sub: wet substrate, dry sub: dry substrate.
    PC: P. chrysosporium; M6: Panus tigrinus (M609RQY); RO2: Panus tigrinus (RO209RQY).
    BP: banana peel, PAp: pineapple peel, Pp: papaya peel.
    All selected microbes significantly (p < 0.05) produced more biomass on dry substrate compared with wet substrate. No significant difference was recorded between P. chrysosporium biomass on dry and wet forms of Bp and Pp. However, a significant difference was observed between dry and wet substrates for M6 and RO2; only M6 recorded an insignificant difference. However, on Pp, P. chrysosporium and RO2 showed a significant difference in biomass production while M6 was insignificant. Investigations involving protein enrichment of supplemented PAp showed that fungal imperfecti cells recorded profound biomass growth as prelude to high protein synthesis. However the biomass production of all selected strains on either wet or dry substrate forms showed that intense biomass was produced in this report compared with other works (Correia et al., 2007, Dhanasekaran et al., 2011and Nitayavardhana and Khanal, 2010).

    3.2 Effects of fungal growth on metabolizable sugar content of fruit peels

    Initial concentration of total soluble sugar (TOS) by wet Bp was 36.71 mg/g; 75.45 mg/g for PAp while Pp had 52.35 mg/g. The final concentration of TOS after bioconversion showed that P. chrysosporium utilized more fermentable sugar than M6 and RO2 on Bp and PAp while it consumed least of Pp sugar (Table 2). Raw Bp, PAp, and Pp had 1.30 mg/g, 1.80 mg/g and 4.54 mg/g total reducing sugar (TRS); after 7 day bioconversion P. chrysosporium consumed less TRS than M6 and RO2. This shows that P. chrysosporium required less reducing sugar for growth and development. RO2 on the other hand, showed preferred TRS compared with TOS in other fruit wastes, but M6 showed an unchanged consumption pattern for TOS and TRS respectively. Results of other workers showed that increased fungal biomass corresponds with increased metabolism of reducing sugar content in fermentation media (Essien et al., 2005 and Jamal et al., 2009). A linear biomass production over the fermentation period was documented with a corresponding exponential fall in reducing sugars (Correia et al., 2007).
    Table 2. Residual fermentable sugar of sole substrate.
    WRFBanana peel
    Pineapple peel
    Papaya peel
    TOS (g/L)
    TRS (g/L)
    TOS (g/L)
    TRS (g/L)
    TOS (g/L)
    TRS (g/L)
    Wet subDry subWet subDry subWet subDry subWet subDry subWet subDry subWet subDry sub
    PC4.01 ± 0.434.25 ± 0.100.57 ± 0.190.75 ± 0.034.28 ± 0.104.31 ± 0.050.79 ± 0.030.69 ± 0.044.28 ± 0.064.21 ± 0.030.25 ± 0.100.73 ± 0.03
    M64.21 ± 0.064.31 ± 0.010.60 ± 0.010.82 ± 0.034.34 ± 0.054.26 ± 0.040.78 ± 0.010.75 ± 0.034.26 ± 0.064.23 ± 0.010.66 ± 0.160.64 ± 0.03
    RO24.18 ± 0.134.30 ± 0.100.07 ± 0.030.74 ± 0.054.33 ± 0.111.47 ± 0.490.66 ± 0.070.74 ± 0.044.15 ± 0.094.28 ± 0.070.02 ± 0.030.74 ± 0.03
    PC: P. chrysosporium; M6: Panus tigrinus (M609RQY); RO2: Panus tigrinus (RO209RQY).
    Wet sub: wet substrate, dry sub: dry substrate.
    WRF: white rot fungi.
    TOS: total soluble sugar, TRS: total reducing sugar.
    Initial TOS by dry Bp was 32.84 mg/g; 40.74 mg/g for PAp while Pp had 24.94 mg/g. On dry sample of Bp, final concentration of TOS after bioconversion showed that P. chrysosporium consumed more TOS compared with M6 and RO2. The initial values of TRS for each substrate (Bp 1.29 mg/g; Pp 1.70 mg/g; Pw 0.86 mg/g) showed that P. chrysosporium performed best only on PAp when comparing its TRS values with others. M6 maintained a middle course on all substrates except on Bp where it consumed the least amount of TOS and TRS. Performance of RO2 on all substrates was moderate with the best result on PAp and Bp; it least performed on Pp among other microbes. In a fermentation process involving Aspergillus fumigatus cultivation on optimized media, 1.8 mg of biomass was recorded over 7 days, compared with the present study where an average of 10 g/l was recorded (Essien et al., 2005).

    3.3 Substrate utilization constant (Ku) of fungi on sole substrates

    Increased biomass production by filamentous fungi often inversely relates to substrate nutrients’ concentration – more biomass, less nutrients (Dhanasekaran et al., 2011 and Ezekiel et al., 2010). All selected fungal cells demonstrated profound utilization of simple sugars (TRS and TOS) within the wet substrate matrix by recording high values of Ku (Fig. 1a). M6 and RO2 recorded the highest value on Pp and PAp while PC and ROS utilized Bp better than M6. Although no investigator has taken cognizance of this mathematical relationship in batch bioconversion, data concerning decrease in carbon source as a direct response to microbe growth and product formation abound. An inference drawn from other reports showed that Kuvalues recorded in this research compared favourably with other results’ outcome (Ahmed et al., 2010 and Munawar et al., 2010). Higher values of Ku were recorded for M6 and RO2 only on dry Bp with wet samples (Fig. 1b); slight variation was evident from other substrates, but, they all showed elevated values when compared with wet samples. This observation was consistent with reports of other workers, where WRF was recorded to metabolize more sugars locked in solid matrix together with those released into fermentation broth, higher biomass was reported (Gad et al., 2010 and Jamal et al., 2009).
    Figure 1. Substrate nutrient utilization constant of WRF strains on dry and wet sole fruit peels (a) on wet Bp, PAp and Pp; (b) on dry Bp, PAp and Pp.

    3.4 Fungal biomass production through composite substrates

    Fungal biomass began to manifest after 72 h in all the selected microorganisms. P. chrysosporium produced the highest biomass, followed by RO2 (Table 3). Dry composite substrate significantly produced more biomass compared with wet substrates. RO2 growth on dry matrix of PApPp was most profound albeit, not significantly different from P. chrysosporium and M6. A similar trend occurred by P. chrysosporium on dry PApBp substrate while M6 made its highest impact on PApPp. A significant difference existed between P. chrysosporium biomass on dry and wet substrates of BpPApPp and PApPp, but none occurred between biomass production by BpPp and PApBp respectively. M6 recorded a significant difference in biomass production between dry and wet forms of BpPApPp, PApBp, and PApPp while no significant difference was evident between dry and wet BpPAp. RO2 biomass production differed significantly between dry PApPp and wet type; other substrate combinations (dry and wet) are not profoundly different. Although, there are no reports comparing performance of fungal cells on sole and composite fruit peels, available report showed that WRF biomass and extracellular synthesis increased under combined waste streams than single waste sources (Arumugam and Manikandan, 2011 and Essien et al., 2005).
    Table 3. Fungal biomass production on composite substrates.
    SubstratePC (g/L)
    M6 (g/L)
    RO2 (g/L)
    Dry subWet subDry subWet subDry subWet sub
    BpPApPp18.58 ± 0.08 a113.83 ± 0.03ac217.01 ± 0.02 a114.23 ± 0.03ab220.05 ± 0.13 a115.44 ± 0.01bd1
    BpPp17.83 ± 0.19a315.33 ± 0.02ae319.28 ± 0.12 a317.55 ± 0.04bc320.27 ± 0.22 a320.06 ± 0.02df3
    PApBp21.15 ± 0.17a416.38 ± 0.09a418.26 ± 0.02a415.77 ± 0.06a520.15 ± 0.28 a416.26 ± 0.04a4
    PApPp19.41 ± 0.15a510.72 ± 0.07a619.93 ± 0.10a612.64 ± 0.02a723.37 ± 0.27 a512.47 ± 0.10a6
    a,b,c,d: values with different superscripts are significantly different at p < 0.05.
    1,2,3: values with different superscripts are significantly different at p < 0.05.
    Wet sub: wet substrate, dry sub: dry substrate.
    PC: P. chrysosporium; M6: Panus tigrinus (M609RQY); RO2: Panus tigrinus (RO209RQY).
    BpPApPp: banana, pineapple and papaya peel, BpPp: banana and papaya peel, PApBp: pineapple and banana peel, PApPp: pineapple and papaya peel.

    3.5 Effects of fungal growth on sugar content of composite substrates

    Initial TOS of wet composite substrate was 164.0 mg/g for BpPApPw, 112.16 mg/g for BpPAp, 89.06 mg/g for BpPp while PApPp had 127.8 mg/g. Similarly, initial TRS for wet composite substrates was 98.52 mg/g for BpPApPw, 73.58 mg/g for BpPAp, 57.78 mg/g for BpPp while PApPp had 127.80 mg/g of TRS. On wet media, all selected strains left an average of 4.0 mg/g TOS while less than 2.0 mg/g was the highest residual TRS on the average (Table 4). P. chrysosporium and M6 consumed more TOS of dry substrate compared with the wet form while RO2 left a higher amount of TOS in the dry substrate. All selected fungal strains demonstrated huge metabolic preference for TRS by leaving a paltry 0.5 mg/g in the media after 7 day bioconversion. The tendency of WRF to metabolize more TRS was earlier reported (Gad et al., 2010) however, other fermentative microbes exhibited similar growth requirement for higher synthesis of bio-products from agro-residues (Dhanasekaran et al., 2011). Therefore, results presented were consistent with others where improved protein, enzyme and organic acid synthesis were end products of sugar metabolism of agro-wastes (Ezekiel et al., 2010).
    Table 4. Residual fermentable sugar of composite substrates after bioconversion.
    SubstratePC
    M6
    RO2
    TOS (g/L)
    TRS (g/L)
    TOS (g/L)
    TRS (g/L)
    TOS (g/L)
    TRS (g/L)
    Wet subDry subWet subDry subWet subDry subWet subDry subWet subDry subWet subDry sub
    BpPApPp4.04 ± 0.092.72 ± 0.300.07 ± 0.010.49 ± 0.203.88 ± 0.392.51 ± 0.330.03 ± 0.020.31 ± 0.034.05 ± 0.3616.87 ± 0.330.11 ± 0.010.59 ± 0.03
    BpPp4.03 ± 0.083.38 ± 0.400.09 ± 0.000.53 ± 0.104.20 ± 0.022.35 ± 0.081.97 ± 0.030.35 ± 0.194.02 ± 0.4216.37 ± 0.080.06 ± 0.000.49 ± 0.19
    PApBp4.32 ± 0.082.65 ± 1.010.18 ± 0.110.43 ± 0.064.25 ± 0.022.35 ± 0.081.52 ± 0.040.29 ± 0.094.21 ± 0.0714.63 ± 0.080.51 ± 0.010.41 ± 0.09
    PApPp4.17 ± 0.093.04 ± 0.760.72 ± 0.000.58 ± 0.354.24 ± 0.042.88 ± 0.111.94 ± 0.050.46 ± 0.654.02 ± 0.0215.92 ± 0.110.05 ± 0.000.51 ± 0.06
    Wet sub: wet substrate, dry sub: dry substrate.
    PC: P. chrysosporium; M6: Panus tigrinus (M609RQY); RO2: Panus tigrinus (RO209RQY).
    BpPApPp: banana, pineapple and papaya peel, BpPp: banana and papaya peel, PApBp: pineapple and banana peel, PApPp: pineapple and papaya peel.
    TOS: total soluble sugar, TRS: total reducing sugar.

    3.6 Fungal substrate utilization constant (Ku) on composite substrates

    Wet composite substrates supported improved microbial metabolism with high values of Ku recorded for all selected WRF (Fig. 2a). RO2 recorded the highest values on BpPApPp, BpPAp, and PApPp while P. chrysosporium was best on BpPp. Although M6 was least performing on composite wet samples, it exhibited improved Ku value compared with sole samples. Generally, all the strains demonstrated improved metabolism on composite wet samples; suggesting synergy among the substrates (Saheed et al., 2013). Similarly, results showed that all fungal strains performed well on dry composite substrates (Fig. 2b); P. chrysosporium showed higher Ku on BpPp while M6 outclassed others on BpPAp and PApPp. However, the values of Kurecorded for dry composite substrates were lower when compared with wet samples. This could be caused by high sugar release from the wet compared with the dry sample where osmotic effects may hinder sugar release (Enwefa, 1991). Although there are no reports concerning Ku of fermentation processes, deductions from other fungal investigation showed that Ku of fungal strains are higher for wet media albeit, may not result in higher products. In a report concerning bio-protein production, higher protein was produced in slurry substrates and fruit waste hydrolyzates though their Ku differ greatly (Dhanasekaran et al., 2011 and Dimova et al., 2010).
    Figure 2. Composite substrate fermentable sugar (TOS and TRS) utilization constant of WRF strains (a) on wet composite substrates; (b) on dry composite substrates.

    3.7 Substrate conversion efficiency of microbes on each fruit waste

    On Bp, selected fungi demonstrated comparable efficiency on TOS (Fig. 3a); this observed similarity between selected fungal strains showed congruence in their metabolism regardless of substrate type. The efficiency of each microbe differed greatly on TRS; RO2 performed better than other fungal strains on wet Bp followed by P. chrysosporium and M6. A similar trend was visible on dry Bp where RO2 had a better performance. This result demonstrated RO2 preference for TRS compared with TOS on either dry or wet forms. This trend was previously recorded for WRF for their selective metabolism of fermentable sugar under different fermentation broth conditions (Rosma et al., 2007). However, information on P. chrysosporium suggested consistency between the present study and other reports (Gad et al., 2010). Information concerning proficiency of RO2 and M6 showed that they perform optimally on complex substrates. Therefore, this study provided more insight into their biochemical performance (Ruqayyah et al., 2011).
    Figure 3. Substrate fermentable sugar (TOS and TRS) utilization efficiency of WRF strains on sole fruit peels (a) banana peels; (b) pineapple peels; (c) papaya peels.
    On PAp, all strains demonstrated profound efficiency for TOS metabolism when compared with TRS (Fig. 3b). Fungal cells exhibited closer efficiency on wet PAp for TOS while RO2 performed insignificantly better than P. chrysosporium and M6 on dry substrates. However, selected fungal strains were less efficient on TRS except RO2 that slightly metabolize more TRS compared with others; P. chrysosporium exhibited intense metabolism on dry TRS. The reduction in efficiencies of the strains on TRS could be attributed to high content of the sugar since PAp generally harbors high reducing sugar (Sanjay Kumar and Sarkar, 2011).
    The efficiency of the selected strain concerning TOS of Pp showed that all strains demonstrated profound efficiency on wet substrate than dry (Fig. 3c). Same trend was obvious for TRS with a noticeable difference between dry and wet Pp forms. This metabolic performance by fungal strains on Pp revealed that it could support microbial growth for production of value added products. This observation was raised by other workers where high protein synthesis was recorded due to the metabolism of sugar contents of agro-residues (Akin-Osanaiye et al., 2008).

    3.8 Substrate component conversion efficiency of selected microbes on composite substrates

    The performance of each selected fungal strain on TOS and TRS of composite substrates (dry and wet forms) showed that high substrate utilization efficiency heralded their growth and development (Fig. 4a–d). The trend was true for TOS and TRS (wet and dry) for all selected strains except M6; combination of all three substrates increased efficiency compared with dual membered substrates (Fig. 4a). However, such differences were not significant owing to comparable compositions of TRS and TOS. An exception to this was M6 that exhibited a significant difference when compared with other microorganisms. Low efficiency was obvious on TRS dry form by all fungal strains when compared with their wet equivalent; though, such effect may not directly influence biomass production (Narasimha et al., 2006).
    Figure 4. Substrate fermentable sugar (TOS and TRS) utilization efficiency of WRF on composite substrates (a) BpPApPp, (b) BpPAp, (c) PApPp and (d) BpPp.

    4 Conclusion

    All the sole and composite substrates supported fungal growth and development through the availability of fermentable sugar. Fungal biomass was high in the three fruit wastes, and WRF performed efficiently by consuming TRS and TOS for improved biomass production. Wet and dry sole and composite substrates provided an adequate carbon source for fungal growth, development and product synthesis. Fungal strains proved to be able to metabolize simple sugar components of the substrate by converting them into biomass. Substrate utilization constant was high in all microbial treatments, as fungal strains metabolized sugars contained in the substrates (wet and dry).

    Acknowledgements

    The research was financially supported by a research Grant EDW B13-004-0889 approved by the Research management Center (RMC), International Islamic University Malaysia. The authors are grateful to the RMC and Department of Biotechnology Engineering, IIUM for supporting and providing the laboratory facilities.

    References

      • Aggelopoulos et al., 2014
      • T. Aggelopoulos, K. Katsieris, A. Bekatorou, A. Pandey, I.M. Banat, A.A. Koutinas
      • Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production
      • Food Chem., Volume 145, 2014, pp. 710–716
      • Article
         | 
         PDF (509 K)
         | 
        View Record in Scopus
        Citing articles (9)
      • Ahmed et al., 2010
      • S. Ahmed, F. Ahmad, A.S. Hashmi
      • Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp. and Candida utilis
      • Pak. J. Bot., Volume 42, Issue 2, 2010, pp. 1225–1234
      • View Record in Scopus
        Citing articles (14)
      • Akin-Osanaiye et al., 2008
      • B. Akin-Osanaiye, H. Nzelibe, A. Agbaji
      • Ethanol production from Carica papaya (pawpaw) fruit waste
      • Asian J. Biochem., Volume 3, Issue 3, 2008, pp. 188–193
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (11)
      • Alam et al., 2005
      • M.Z. Alam, N. Muhammad, M.E. Mahmat
      • Production of cellulase from oil palm biomass as substrate by solid state bioconversion
      • Am. J. Appl. Sci., Volume 2, Issue 2, 2005, p. 569
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (23)
      • Ali et al., 2014
      • S.M. Ali, A. Pervaiz, B. Afzal, N. Hamid, A. Yasmin
      • Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city
      • J. King Saud Univ. Sci., Volume 26, Issue 1, 2014, pp. 59–65
      • Article
         | 
         PDF (872 K)
         | 
        View Record in Scopus
        Citing articles (7)
      • Arumugam and Manikandan, 2011
      • R. Arumugam, M. Manikandan
      • Fermentation of pretreated hydrolyzates of banana and mango fruit wastes for ethanol production
      • Asian J. Experiment. Biol. Sci., Volume 2, 2011, pp. 246–256
      • View Record in Scopus
        Citing articles (17)
      • Correia et al., 2007
      • R. Correia, M. Magalhaes, G. Macêdo
      • Protein enrichment of pineapple waste with Saccharomyces cerevisiae by solid state bioprocessing
      • J. Sci. Ind. Res., Volume 66, 2007, pp. 259–262
      • View Record in Scopus
        Citing articles (13)
      • Dhanasekaran et al., 2011
      • D. Dhanasekaran, S. Lawanya, S. Saha, N. Thajuddin, A. Panneerselvam
      • Production of single cell protein from pineapple waste using yeast
      • Innovative Rom. Food Biotechnol., Volume 8, 2011
      • Dimova et al., 2010
      • N. Dimova, Z. Iovkova, M. Brinkova, T.I. Godjevargova
      • Production of candida biomass from hydrolysed agricultural biowaste
      • Biotechnol. Biotechnol. Equip., Volume 24, Issue 1, 2010, pp. 1577–1581
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (1)
      • Dubois et al., 1956
      • M. Dubois, K.A. Gilles, J.K. Hamilton, P.t. Rebers, F. Smith
      • Colorimetric method for determination of sugars and related substances
      • Anal. Chem., Volume 28, Issue 3, 1956, pp. 350–356
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (23345)
      • Enwefa, 1991
      • C. Enwefa
      • Biomass production from banana skins
      • Appl. Microbiol. Biotechnol., Volume 36, Issue 2, 1991, pp. 283–284
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (9)
      • Essien et al., 2005
      • J. Essien, E. Akpan, E. Essien
      • Studies on mould growth and biomass production using waste banana peel
      • Bioresour. Technol., Volume 96, Issue 13, 2005, pp. 1451–1456
      • Article
         | 
         PDF (289 K)
         | 
        View Record in Scopus
        Citing articles (48)
      • Ezekiel et al., 2010
      • O.O. Ezekiel, O.C. Aworh, H.P. Blaschek, T.C. Ezeji
      • Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316)
      • Afr. J. Biotechnol., Volume 9, Issue 2, 2010
      • Gad et al., 2010
      • A.S. Gad, E. Hasan, A. Abd El Aziz
      • Utilization of Opuntia ficus indica waste for production of Phanerochaete chrysosporium bioprotein
      • J. Am. Sci., Volume 6, Issue 8, 2010
      • Jamal et al., 2009
      • P. Jamal, M.F. Tompang, M.Z. Alam
      • Optimization of media composition for the production of bioprotein from pineapple skins by liquid-state bioconversion
      • J. Appl. Sci., Volume 9, Issue 17, 2009
      • Jamal et al., 2012
      • P. Jamal, Olorunnisola K. Saheed, Zahangir Alam
      • Bio-valorization potential of banana peels (Musa sapientum): an overview
      • Asian J. Biotechnol., Volume 4, Issue 4, 2012, pp. 1–14
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (6)
      • Lim et al., 2010
      • J.Y. Lim, H.-S. Yoon, K.-Y. Kim, K.-S. Kim, J.G. Noh, I.G. Song
      • Optimum conditions for the enzymatic hydrolysis of citron waste juice using response surface methodology (RSM)
      • Food Sci. Biotechnol., Volume 19, Issue 5, 2010, pp. 1135–1142
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (5)
      • Miller, 1959
      • G.L. Miller
      • Use of dinitrosalicylic acid reagent for determination of reducing sugar
      • Anal. Chem., Volume 31, Issue 3, 1959, pp. 426–428
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (12113)
      • Munawar et al., 2010
      • R. Munawar, M. Irfan, N. Nadeem, Q. Syed, Z. Siddique
      • Biosynthesis of single cell biomass of Candida utilis by submerged fermentation
      • Pak. J. Sci., Volume 62, 2010, pp. 1–5
      • View Record in Scopus
        Citing articles (1)
      • Narasimha et al., 2006
      • G. Narasimha, A. Sridevi, Buddolla Viswanath, M. Subhosh Chandra, B. R.R.
      • Nutrient effects on production of cellulolytic enzymes by Aspergillus niger
      • Afr. J. Biotechnol., Volume 5, Issue 5, 2006, pp. 472–476
      • View Record in Scopus
        Citing articles (55)
      • Nitayavardhana and Khanal, 2010
      • S. Nitayavardhana, S.K. Khanal
      • Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient
      • Bioresour. Technol., Volume 101, Issue 23, 2010, pp. 9078–9085
      • Article
         | 
         PDF (483 K)
         | 
        View Record in Scopus
        Citing articles (18)
      • Omar and Sabry, 1991
      • S. Omar, S. Sabry
      • Microbial biomass and protein production from whey
      • J. Islamic Acad. Sci., Volume 4, 1991, pp. 170–172
      • View Record in Scopus
        Citing articles (1)
      • Qureshi et al., 2014
      • N. Qureshi, M.A. Cotta, B.C. Saha
      • Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors
      • Food Bioprod. Process., Volume 92, Issue 3, 2014, pp. 298–308
      • Article
         | 
         PDF (1548 K)
         | 
        View Record in Scopus
        Citing articles (9)
      • Rasu Jayabalan et al., 2010
      • K.M. Rasu Jayabalan, Muthuswamy Sathishkumar, Krishnaswami Swaminathan, Sei.-Eok Yun
      • Biochemical characteristics of tea fungus produced during kombucha fermentation
      • Food Sci. Biotechnol., Volume 19, Issue 3, 2010, pp. 843–847
      • Rosma et al., 2007
      • A. Rosma, M.W. Cheong
      • Effects of nitrogen supplementation on yeast (Candida utilis) biomass production by using pineapple (Ananas comosus) waste extracted medium
      • Malaysian J. Microbiol., Volume 3, Issue 1, 2007, pp. 19–26
      • View Record in Scopus
        Citing articles (8)
      • Ruqayyah et al., 2011
      • T. Ruqayyah, P. Jamal, M.Z. Alam, M.E.S. Mirghani
      • Lignin modifying enzyme activities by some Malaysian white rot fungi
      • Enzyme Microb. Technol., Volume 28, Issue 7–8, 2011, pp. 602–605
      • View Record in Scopus
        Citing articles (1)
      • Ruqayyah et al., 2013
      • T.I. Ruqayyah, P. Jamal, M.Z. Alam, M.E.S. Mirghani
      • Biodegradation potential and ligninolytic enzyme activity of two locally isolated Panus tigrinus strains on selected agro-industrial wastes
      • J. Environ. Manage., Volume 118, 2013, pp. 115–121
      • Article
         | 
         PDF (463 K)
         | 
        View Record in Scopus
        Citing articles (8)
      • Saheed et al., 2013
      • O.K. Saheed, P. Jamal, M.I.A. Karim, Z. Alam, S.A. Muyibi
      • Cellulolytic fruits wastes: a potential support for enzyme assisted protein production
      • J. Biol. Sci., Volume 13, Issue 5, 2013, pp. 379–385
      • View Record in Scopus
        Citing articles (2)
      • Sanjay Kumar and Sarkar, 2011
      • H.K.S. Sanjay Kumar, B.C. Sarkar
      • Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid state fermentation (SSF)
      • Food Sci. Biotechnol., Volume 20, Issue 5, 2011, pp. 1289–1298
      • Taskin et al., 2010
      • M. Taskin, S. Erdal, O. Canli
      • Utilization of waste loquat (Eriobotrya japonica Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii
      • Food Sci. Biotechnol., Volume 19, Issue 4, 2010, pp. 1069–1075
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (16)
      • Tijani et al., 2012
      • I.D.R. Tijani, P. Jamal, M. Alam, M. Mirghani
      • Optimization of cassava peel medium to an enriched animal feed by the white rot fungi Panus tigrinus M609RQY
      • Int. Food Res. J., Volume 19, Issue 2, 2012, pp. 427–432
      • View Record in Scopus
        Citing articles (3)
    • Peer review under responsibility of King Saud University.
    • ⁎ 
      Corresponding author. Tel.: +60 01 6679 9736; fax: +60 03 6196 4422.

    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S1018364715000725
    at June 30, 2016 No comments:
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
    Newer Posts Older Posts Home
    Subscribe to: Comments (Atom)

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...

    • Pengalaman bekerja sebagai kerani kilang.
      Assalamualaikum dan salam sejahtera chu olls.     Alhamdulillah sudah seminggu saya melalui pengalaman bermakna ini. Sebagai seorang pel...
    • MIDA- INDUSTRI BERASASKAN KAYU
      Industri berasaskan kayu di Malaysia terdiri daripada  Kayu bergergaji; Venir dan produk panel yang termasuk papan lapis dan produk ...
    • Advantages and Disadvantages of Fasting for Runners
      Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...
    • UKIRAN KAYU DALAM MASYARAKAT MELAYU
      Seni ukiran kayu di kalangan masyarakat Melayu bukan sahaja terdapat pada rumah-rumah tetapi penjelmaan dan penerapannya terdapat pada is...
    • Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia
      International Journal of Ecology Volume 2017 (2017), Article ID 3985631, 10 pages https://doi.org/10.1155/2017/3985631 Author Evgeny  ...
    • Diploma Teknologi Berasaskan Kayu
      LATARBELAKANG POLITEKNIK KOTA KINABALU Politeknik Kota Kinabalu merupakan politeknik yang ketujuh ditubuhkan oleh Kementerian Pendidikan...
    • DIPLOMA REKA BENTUK PERABUT
      Sijil Teknologi Diploma Rekabentuk Perabot Kod Kursus :  K18 ...
    • Motif, Corak dan Ragi Tenun Melayu Riau
      Author MELAYU Riau kaya dengan khazanah budayanya. Antaranya yang amat menonjol adalah motif ornamen Melayunya, yang banyak dipakai untuk ...
    • SISTEM PENGURUSAN HUTAN
      Polisi dan Strategi Untuk memastikan HSK diurus secara berkekalan, "Dasar dan Strategi Pengurusan Hutan untuk Semenanjung ...
    • 5 Jenama Foundation Terbaik, Beli Di Farmasi Je!
      Beberapa minggu sudah, penulis pernah mencadangkan beberapa jenama maskara terbaik yang mudah didapati pada harga berpatutan dari farmas...

    nuffnang ads

    Search This Blog

    Pages

    • Home

    About Me

    Unknown
    View my complete profile

    Blog Archive

    • ►  2018 (371)
      • ►  June (17)
        • ►  Jun 22 (8)
        • ►  Jun 12 (1)
        • ►  Jun 11 (2)
        • ►  Jun 05 (6)
      • ►  May (6)
        • ►  May 31 (6)
      • ►  April (75)
        • ►  Apr 30 (1)
        • ►  Apr 27 (1)
        • ►  Apr 26 (15)
        • ►  Apr 25 (10)
        • ►  Apr 24 (11)
        • ►  Apr 18 (2)
        • ►  Apr 12 (4)
        • ►  Apr 10 (5)
        • ►  Apr 09 (9)
        • ►  Apr 05 (17)
      • ►  March (65)
        • ►  Mar 27 (7)
        • ►  Mar 22 (2)
        • ►  Mar 20 (4)
        • ►  Mar 13 (14)
        • ►  Mar 12 (11)
        • ►  Mar 08 (7)
        • ►  Mar 06 (1)
        • ►  Mar 05 (1)
        • ►  Mar 01 (18)
      • ►  February (103)
        • ►  Feb 28 (25)
        • ►  Feb 27 (27)
        • ►  Feb 26 (10)
        • ►  Feb 20 (1)
        • ►  Feb 19 (9)
        • ►  Feb 09 (13)
        • ►  Feb 06 (6)
        • ►  Feb 05 (5)
        • ►  Feb 02 (7)
      • ►  January (105)
        • ►  Jan 25 (11)
        • ►  Jan 23 (5)
        • ►  Jan 16 (6)
        • ►  Jan 15 (9)
        • ►  Jan 14 (7)
        • ►  Jan 10 (1)
        • ►  Jan 09 (2)
        • ►  Jan 08 (4)
        • ►  Jan 04 (24)
        • ►  Jan 03 (2)
        • ►  Jan 02 (21)
        • ►  Jan 01 (13)
    • ►  2017 (6160)
      • ►  December (11)
        • ►  Dec 30 (11)
      • ►  November (31)
        • ►  Nov 26 (9)
        • ►  Nov 07 (8)
        • ►  Nov 06 (3)
        • ►  Nov 01 (11)
      • ►  October (345)
        • ►  Oct 31 (4)
        • ►  Oct 25 (42)
        • ►  Oct 24 (5)
        • ►  Oct 23 (15)
        • ►  Oct 22 (3)
        • ►  Oct 18 (7)
        • ►  Oct 17 (27)
        • ►  Oct 16 (14)
        • ►  Oct 15 (6)
        • ►  Oct 13 (18)
        • ►  Oct 12 (44)
        • ►  Oct 11 (57)
        • ►  Oct 09 (47)
        • ►  Oct 06 (14)
        • ►  Oct 05 (1)
        • ►  Oct 04 (13)
        • ►  Oct 03 (17)
        • ►  Oct 02 (11)
      • ►  September (186)
        • ►  Sept 29 (3)
        • ►  Sept 26 (7)
        • ►  Sept 25 (18)
        • ►  Sept 21 (29)
        • ►  Sept 20 (10)
        • ►  Sept 19 (11)
        • ►  Sept 18 (2)
        • ►  Sept 14 (19)
        • ►  Sept 13 (28)
        • ►  Sept 11 (3)
        • ►  Sept 10 (15)
        • ►  Sept 08 (5)
        • ►  Sept 06 (22)
        • ►  Sept 05 (14)
      • ►  August (158)
        • ►  Aug 29 (10)
        • ►  Aug 28 (73)
        • ►  Aug 27 (2)
        • ►  Aug 21 (4)
        • ►  Aug 18 (17)
        • ►  Aug 17 (4)
        • ►  Aug 14 (13)
        • ►  Aug 11 (5)
        • ►  Aug 10 (4)
        • ►  Aug 09 (7)
        • ►  Aug 08 (1)
        • ►  Aug 06 (3)
        • ►  Aug 04 (2)
        • ►  Aug 03 (13)
      • ►  July (290)
        • ►  Jul 26 (9)
        • ►  Jul 25 (7)
        • ►  Jul 24 (25)
        • ►  Jul 23 (5)
        • ►  Jul 21 (13)
        • ►  Jul 18 (19)
        • ►  Jul 17 (18)
        • ►  Jul 14 (17)
        • ►  Jul 13 (75)
        • ►  Jul 12 (10)
        • ►  Jul 11 (64)
        • ►  Jul 10 (26)
        • ►  Jul 09 (2)
      • ►  June (522)
        • ►  Jun 30 (1)
        • ►  Jun 27 (3)
        • ►  Jun 22 (13)
        • ►  Jun 21 (41)
        • ►  Jun 20 (3)
        • ►  Jun 19 (68)
        • ►  Jun 16 (33)
        • ►  Jun 15 (87)
        • ►  Jun 13 (25)
        • ►  Jun 12 (26)
        • ►  Jun 09 (20)
        • ►  Jun 08 (60)
        • ►  Jun 07 (54)
        • ►  Jun 06 (53)
        • ►  Jun 05 (35)
      • ►  May (684)
        • ►  May 31 (6)
        • ►  May 22 (3)
        • ►  May 21 (14)
        • ►  May 20 (12)
        • ►  May 19 (3)
        • ►  May 18 (26)
        • ►  May 17 (63)
        • ►  May 16 (27)
        • ►  May 15 (25)
        • ►  May 14 (16)
        • ►  May 07 (9)
        • ►  May 06 (26)
        • ►  May 05 (74)
        • ►  May 04 (126)
        • ►  May 03 (51)
        • ►  May 02 (153)
        • ►  May 01 (50)
      • ►  April (759)
        • ►  Apr 29 (56)
        • ►  Apr 28 (37)
        • ►  Apr 27 (67)
        • ►  Apr 26 (87)
        • ►  Apr 25 (6)
        • ►  Apr 10 (4)
        • ►  Apr 09 (5)
        • ►  Apr 08 (78)
        • ►  Apr 07 (57)
        • ►  Apr 06 (52)
        • ►  Apr 05 (53)
        • ►  Apr 04 (43)
        • ►  Apr 03 (94)
        • ►  Apr 02 (28)
        • ►  Apr 01 (92)
      • ►  March (1744)
        • ►  Mar 31 (90)
        • ►  Mar 30 (74)
        • ►  Mar 29 (58)
        • ►  Mar 28 (50)
        • ►  Mar 27 (95)
        • ►  Mar 26 (58)
        • ►  Mar 25 (98)
        • ►  Mar 24 (94)
        • ►  Mar 23 (77)
        • ►  Mar 22 (43)
        • ►  Mar 21 (54)
        • ►  Mar 20 (43)
        • ►  Mar 19 (88)
        • ►  Mar 18 (65)
        • ►  Mar 17 (63)
        • ►  Mar 16 (94)
        • ►  Mar 15 (79)
        • ►  Mar 14 (35)
        • ►  Mar 11 (10)
        • ►  Mar 10 (43)
        • ►  Mar 09 (40)
        • ►  Mar 08 (27)
        • ►  Mar 07 (40)
        • ►  Mar 06 (62)
        • ►  Mar 05 (48)
        • ►  Mar 04 (63)
        • ►  Mar 03 (54)
        • ►  Mar 02 (13)
        • ►  Mar 01 (86)
      • ►  February (715)
        • ►  Feb 28 (10)
        • ►  Feb 27 (61)
        • ►  Feb 26 (31)
        • ►  Feb 24 (22)
        • ►  Feb 23 (31)
        • ►  Feb 22 (42)
        • ►  Feb 21 (30)
        • ►  Feb 20 (42)
        • ►  Feb 19 (43)
        • ►  Feb 18 (46)
        • ►  Feb 17 (39)
        • ►  Feb 16 (39)
        • ►  Feb 15 (24)
        • ►  Feb 14 (54)
        • ►  Feb 13 (25)
        • ►  Feb 12 (78)
        • ►  Feb 10 (53)
        • ►  Feb 09 (22)
        • ►  Feb 01 (23)
      • ►  January (715)
        • ►  Jan 30 (25)
        • ►  Jan 28 (19)
        • ►  Jan 27 (36)
        • ►  Jan 26 (27)
        • ►  Jan 24 (27)
        • ►  Jan 22 (22)
        • ►  Jan 21 (58)
        • ►  Jan 20 (20)
        • ►  Jan 19 (30)
        • ►  Jan 18 (39)
        • ►  Jan 17 (26)
        • ►  Jan 16 (36)
        • ►  Jan 15 (62)
        • ►  Jan 14 (22)
        • ►  Jan 13 (20)
        • ►  Jan 12 (33)
        • ►  Jan 11 (32)
        • ►  Jan 10 (26)
        • ►  Jan 05 (11)
        • ►  Jan 04 (22)
        • ►  Jan 03 (35)
        • ►  Jan 02 (34)
        • ►  Jan 01 (53)
    • ▼  2016 (6885)
      • ►  December (986)
        • ►  Dec 31 (12)
        • ►  Dec 30 (23)
        • ►  Dec 29 (15)
        • ►  Dec 28 (29)
        • ►  Dec 27 (32)
        • ►  Dec 26 (29)
        • ►  Dec 25 (39)
        • ►  Dec 24 (43)
        • ►  Dec 23 (29)
        • ►  Dec 22 (28)
        • ►  Dec 21 (46)
        • ►  Dec 20 (28)
        • ►  Dec 19 (36)
        • ►  Dec 18 (14)
        • ►  Dec 17 (24)
        • ►  Dec 16 (10)
        • ►  Dec 15 (43)
        • ►  Dec 14 (55)
        • ►  Dec 13 (38)
        • ►  Dec 12 (45)
        • ►  Dec 11 (26)
        • ►  Dec 10 (48)
        • ►  Dec 09 (34)
        • ►  Dec 08 (22)
        • ►  Dec 07 (29)
        • ►  Dec 06 (15)
        • ►  Dec 05 (45)
        • ►  Dec 04 (38)
        • ►  Dec 03 (41)
        • ►  Dec 02 (41)
        • ►  Dec 01 (29)
      • ►  November (600)
        • ►  Nov 30 (38)
        • ►  Nov 29 (36)
        • ►  Nov 28 (43)
        • ►  Nov 27 (22)
        • ►  Nov 26 (27)
        • ►  Nov 25 (39)
        • ►  Nov 24 (27)
        • ►  Nov 23 (37)
        • ►  Nov 22 (21)
        • ►  Nov 21 (32)
        • ►  Nov 20 (20)
        • ►  Nov 19 (31)
        • ►  Nov 18 (34)
        • ►  Nov 17 (29)
        • ►  Nov 16 (21)
        • ►  Nov 15 (33)
        • ►  Nov 14 (16)
        • ►  Nov 13 (3)
        • ►  Nov 12 (3)
        • ►  Nov 11 (1)
        • ►  Nov 09 (2)
        • ►  Nov 07 (14)
        • ►  Nov 04 (16)
        • ►  Nov 03 (17)
        • ►  Nov 02 (23)
        • ►  Nov 01 (15)
      • ►  October (374)
        • ►  Oct 31 (15)
        • ►  Oct 30 (2)
        • ►  Oct 29 (4)
        • ►  Oct 28 (25)
        • ►  Oct 27 (19)
        • ►  Oct 26 (16)
        • ►  Oct 25 (11)
        • ►  Oct 24 (14)
        • ►  Oct 23 (12)
        • ►  Oct 21 (14)
        • ►  Oct 20 (19)
        • ►  Oct 19 (21)
        • ►  Oct 18 (17)
        • ►  Oct 17 (15)
        • ►  Oct 16 (20)
        • ►  Oct 15 (12)
        • ►  Oct 14 (11)
        • ►  Oct 13 (21)
        • ►  Oct 12 (13)
        • ►  Oct 11 (6)
        • ►  Oct 10 (12)
        • ►  Oct 09 (17)
        • ►  Oct 08 (10)
        • ►  Oct 07 (11)
        • ►  Oct 06 (19)
        • ►  Oct 05 (13)
        • ►  Oct 03 (5)
      • ►  September (406)
        • ►  Sept 29 (6)
        • ►  Sept 28 (2)
        • ►  Sept 27 (12)
        • ►  Sept 16 (20)
        • ►  Sept 15 (34)
        • ►  Sept 14 (39)
        • ►  Sept 13 (32)
        • ►  Sept 12 (36)
        • ►  Sept 11 (18)
        • ►  Sept 10 (16)
        • ►  Sept 07 (6)
        • ►  Sept 06 (26)
        • ►  Sept 05 (14)
        • ►  Sept 04 (44)
        • ►  Sept 03 (17)
        • ►  Sept 02 (38)
        • ►  Sept 01 (46)
      • ►  August (777)
        • ►  Aug 31 (13)
        • ►  Aug 29 (22)
        • ►  Aug 28 (13)
        • ►  Aug 27 (26)
        • ►  Aug 26 (18)
        • ►  Aug 25 (14)
        • ►  Aug 24 (13)
        • ►  Aug 23 (22)
        • ►  Aug 22 (23)
        • ►  Aug 21 (20)
        • ►  Aug 20 (23)
        • ►  Aug 19 (13)
        • ►  Aug 18 (31)
        • ►  Aug 17 (36)
        • ►  Aug 16 (17)
        • ►  Aug 15 (33)
        • ►  Aug 14 (24)
        • ►  Aug 13 (28)
        • ►  Aug 12 (28)
        • ►  Aug 11 (28)
        • ►  Aug 10 (59)
        • ►  Aug 09 (33)
        • ►  Aug 08 (39)
        • ►  Aug 07 (23)
        • ►  Aug 06 (36)
        • ►  Aug 05 (23)
        • ►  Aug 04 (25)
        • ►  Aug 03 (17)
        • ►  Aug 02 (26)
        • ►  Aug 01 (51)
      • ►  July (890)
        • ►  Jul 31 (27)
        • ►  Jul 30 (31)
        • ►  Jul 29 (29)
        • ►  Jul 28 (40)
        • ►  Jul 27 (32)
        • ►  Jul 26 (16)
        • ►  Jul 25 (5)
        • ►  Jul 24 (45)
        • ►  Jul 23 (16)
        • ►  Jul 22 (42)
        • ►  Jul 21 (11)
        • ►  Jul 20 (41)
        • ►  Jul 19 (31)
        • ►  Jul 18 (35)
        • ►  Jul 17 (41)
        • ►  Jul 16 (21)
        • ►  Jul 15 (23)
        • ►  Jul 14 (38)
        • ►  Jul 13 (49)
        • ►  Jul 12 (42)
        • ►  Jul 11 (25)
        • ►  Jul 10 (48)
        • ►  Jul 09 (33)
        • ►  Jul 08 (38)
        • ►  Jul 07 (19)
        • ►  Jul 06 (10)
        • ►  Jul 05 (14)
        • ►  Jul 04 (13)
        • ►  Jul 03 (20)
        • ►  Jul 02 (26)
        • ►  Jul 01 (29)
      • ▼  June (1003)
        • ▼  Jun 30 (29)
          • Real-Life Holodeck? 'Star Trek' Tech Uses VR to So...
          • Breast Cancer Gene' BRCA1 Linked to Aggressive Ute...
          • Neural circuits underlying mother’s voice percepti...
          • Utilization of fruit peels as carbon source for wh...
          • High density biomass estimation for wetland vegeta...
          • Stratified aboveground forest biomass estimation b...
          • Strong memory of strain-induced copolymer crystall...
          • Relation of impact strength to the microstructure ...
          • FRET-based acrylic nanoparticles with dual-color p...
          • Donut-like hybrid latex comprising discrete thermo...
          • STARCH BINDER COMPOSITION
          • MODIFIED STARCH COMPOSITIONS
          • Effects of shading after pollination on kernel fil...
          • Genetic diversity for grain Zn concentration in fi...
          • Conditional QTL mapping of three yield components ...
          • Facile conversion of nitrile to amide on polymers ...
          • Hierarchical porous structures in cellulose: NMR r...
          • Length scale dependence in elastomers – comparison...
          • UNDERUTILIZED CROP
          • SHARECROPPING
          • PERMANENT CROP
          • NURSE CROP
          • FERTILE CRESCENT
          • NEOLITHIC FOUNDER CROPS
          • MULTIPLE CROPPING
          • INTERCROPPING
          • INDUSTRIAL CROP
          • FIBER CROP
          • Working Together? Male and Female Brains Just Aren...
        • ►  Jun 29 (43)
        • ►  Jun 28 (27)
        • ►  Jun 27 (33)
        • ►  Jun 26 (49)
        • ►  Jun 25 (30)
        • ►  Jun 24 (32)
        • ►  Jun 23 (42)
        • ►  Jun 22 (38)
        • ►  Jun 21 (20)
        • ►  Jun 20 (30)
        • ►  Jun 19 (37)
        • ►  Jun 18 (15)
        • ►  Jun 17 (12)
        • ►  Jun 16 (52)
        • ►  Jun 15 (59)
        • ►  Jun 14 (49)
        • ►  Jun 13 (38)
        • ►  Jun 12 (39)
        • ►  Jun 11 (44)
        • ►  Jun 10 (22)
        • ►  Jun 09 (34)
        • ►  Jun 08 (39)
        • ►  Jun 07 (28)
        • ►  Jun 06 (38)
        • ►  Jun 05 (19)
        • ►  Jun 04 (20)
        • ►  Jun 03 (27)
        • ►  Jun 02 (27)
        • ►  Jun 01 (31)
      • ►  May (648)
        • ►  May 31 (32)
        • ►  May 30 (48)
        • ►  May 29 (46)
        • ►  May 28 (43)
        • ►  May 27 (19)
        • ►  May 26 (37)
        • ►  May 25 (29)
        • ►  May 24 (22)
        • ►  May 23 (23)
        • ►  May 22 (18)
        • ►  May 21 (18)
        • ►  May 20 (22)
        • ►  May 19 (28)
        • ►  May 18 (12)
        • ►  May 17 (24)
        • ►  May 16 (9)
        • ►  May 15 (18)
        • ►  May 14 (13)
        • ►  May 13 (16)
        • ►  May 12 (6)
        • ►  May 11 (15)
        • ►  May 10 (15)
        • ►  May 09 (25)
        • ►  May 08 (14)
        • ►  May 07 (15)
        • ►  May 06 (10)
        • ►  May 04 (21)
        • ►  May 03 (22)
        • ►  May 02 (9)
        • ►  May 01 (19)
      • ►  April (490)
        • ►  Apr 30 (7)
        • ►  Apr 29 (21)
        • ►  Apr 28 (19)
        • ►  Apr 27 (15)
        • ►  Apr 26 (12)
        • ►  Apr 25 (19)
        • ►  Apr 24 (13)
        • ►  Apr 23 (24)
        • ►  Apr 22 (24)
        • ►  Apr 21 (22)
        • ►  Apr 20 (19)
        • ►  Apr 19 (46)
        • ►  Apr 18 (24)
        • ►  Apr 17 (15)
        • ►  Apr 16 (19)
        • ►  Apr 15 (8)
        • ►  Apr 14 (19)
        • ►  Apr 13 (22)
        • ►  Apr 12 (18)
        • ►  Apr 11 (11)
        • ►  Apr 10 (13)
        • ►  Apr 09 (12)
        • ►  Apr 08 (12)
        • ►  Apr 07 (15)
        • ►  Apr 06 (16)
        • ►  Apr 05 (10)
        • ►  Apr 04 (8)
        • ►  Apr 03 (15)
        • ►  Apr 01 (12)
      • ►  March (445)
        • ►  Mar 31 (7)
        • ►  Mar 30 (10)
        • ►  Mar 29 (17)
        • ►  Mar 28 (15)
        • ►  Mar 27 (8)
        • ►  Mar 26 (11)
        • ►  Mar 25 (10)
        • ►  Mar 24 (9)
        • ►  Mar 23 (13)
        • ►  Mar 22 (9)
        • ►  Mar 21 (13)
        • ►  Mar 20 (9)
        • ►  Mar 19 (15)
        • ►  Mar 18 (14)
        • ►  Mar 17 (11)
        • ►  Mar 16 (15)
        • ►  Mar 15 (23)
        • ►  Mar 14 (26)
        • ►  Mar 13 (20)
        • ►  Mar 12 (14)
        • ►  Mar 11 (18)
        • ►  Mar 10 (27)
        • ►  Mar 09 (18)
        • ►  Mar 08 (25)
        • ►  Mar 07 (11)
        • ►  Mar 06 (15)
        • ►  Mar 05 (18)
        • ►  Mar 04 (9)
        • ►  Mar 03 (14)
        • ►  Mar 02 (7)
        • ►  Mar 01 (14)
      • ►  February (258)
        • ►  Feb 29 (22)
        • ►  Feb 28 (14)
        • ►  Feb 27 (12)
        • ►  Feb 26 (4)
        • ►  Feb 25 (17)
        • ►  Feb 24 (16)
        • ►  Feb 23 (16)
        • ►  Feb 22 (8)
        • ►  Feb 21 (23)
        • ►  Feb 20 (6)
        • ►  Feb 19 (5)
        • ►  Feb 18 (3)
        • ►  Feb 17 (9)
        • ►  Feb 16 (17)
        • ►  Feb 15 (20)
        • ►  Feb 14 (10)
        • ►  Feb 13 (17)
        • ►  Feb 11 (3)
        • ►  Feb 10 (1)
        • ►  Feb 08 (2)
        • ►  Feb 07 (5)
        • ►  Feb 05 (2)
        • ►  Feb 04 (10)
        • ►  Feb 03 (7)
        • ►  Feb 02 (1)
        • ►  Feb 01 (8)
      • ►  January (8)
        • ►  Jan 30 (4)
        • ►  Jan 10 (4)
    • ►  2013 (23)
      • ►  February (18)
        • ►  Feb 07 (1)
        • ►  Feb 06 (2)
        • ►  Feb 05 (8)
        • ►  Feb 04 (5)
        • ►  Feb 02 (1)
        • ►  Feb 01 (1)
      • ►  January (5)
        • ►  Jan 31 (4)
        • ►  Jan 30 (1)

    Report Abuse

    Follower

    Translate

    Total Pageviews

    nuffnang ads

    Nuffnang Ads

    nuffnang ads

    Nuffnang Ads

    Picture Window theme. Theme images by sndrk. Powered by Blogger.