Everything About Wood

Find the information such as human life, natural resource,agriculture,forestry, biotechnology, biodiversity, wood and non-wood materials.

Blog List

Thursday, 30 June 2016

Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.)

Published Date
June 2016, Vol.4(3):220–228, doi:10.1016/j.cj.2016.01.007
Open Access, Creative Commons license, Funding information

Title 

Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.)

  • Author 
  • Han Zhang a,b
  • Jiansheng Chen a
  • Ruyu Li b
  • Zhiying Deng a
  • Kunpu Zhang a
  • Bin Liu a,b
  • Jichun Tian a,,
  • aState Key Laboratory of Crop Biology, Ministry of Science and Technology/Key Laboratory of Crop Biology of Shandong Province, Department of Agronomy/Group of Wheat Quality Breeding, Shandong Agricultural University, Tai'an 271018, China
  • bCrop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
Received 19 November 2015. Revised 27 January 2016. Accepted 15 March 2016. Available online 30 March 2016.

Abstract
Spike number per m2 (SN), kernel number per spike (KNPS) and thousand-kernel weight (TKW) are the three main components determining wheat (Triticum aestivumL.) yield. To evaluate the relationships among them a doubled haploid (DH) population consisting of 168 lines grown at three locations for three years was analyzed by unconditional and conditional QTL mapping. Thirty-three unconditional QTL and fifty-nine conditional QTL were detected. Among them, two QTL (QSN-DH-2B and QSN-DH-3A-1.1) improved SN, with no effect on KNPS. QKNPS-DH-2B-2.1improved KNPS, with no effect on SN. QKNPS-DH-1A-1.1, QKNPS-DH-2D-1.1 and QKNPS-DH-6A improved KNPS, with no effect on SN or TKW. QKNPS-DH-6B was associated with increased SN and TKW. In addition, QTKW-DH-4B, QTKW-DH-5Band QTKW-DH-7B increased TKW without decreasing KNPS. These results provide useful information for marker assisted selection (MAS) and improvement in wheat yield.

Keywords
  • Kernel number per spike
  • QTL mapping
  • Spike number per m2
  • Thousand-kernel weight

  • 1 Introduction

    Common wheat (Triticum aestivum L.) is one of the most important crops worldwide. Its yield is significantly correlated with spike number per m2 (SN), kernel number per spike (KNPS) and thousand-kernel weight (TKW). In wheat-breeding and agronomic studies the relationships of the three components are frequently investigated. Understanding the genetics is crucial for improving yield. Quantitative trait loci (QTL) analysis can dissect and characterize the genetic complexity of yield traits produce a better understanding of the genetic architecture of yield components. Researchers have conducted unconditional QTL analyses on KNPS [1], [2], [3] and [4], SN [1], [2], [3] and [5] and TKW [3], [4], [5], [6], [7] and [8] in different genetic backgrounds and different environments. However, all tree traits are controlled by multiple genes and are affected by environment as well as genetic background. Previous unconditional QTL studies did not always provide an overall true expression of accumulated effects of QTL. Consequently, this method may not be suitable for analysing interactions among QTL or genes controlling related traits [1], [3] and [4].
    Zhu [9] developed conditional analysis methods that are capable of excluding the contribution of a causal trait to variation of the resultant trait. The remaining variation in the resultant trait is defined as conditional variation, or net variation, which indicates the effects of genes that are independent of the causal trait [10]. Therefore, this method can also define the genetic relationships among different traits at the QTL level. To date, this method has been used not only to study the dynamic behaviour of developmental traits but also the effects of conditional variation in the resultant trait on multiple related traits in rice [10] and [11], wheat [12], [13], [14], [15] and [16], maize and rapeseed [17]. In wheat, many cause–effect conditional QTL, such as protein content with yield and yield-related traits [15], flour components with sedimentation volume [18], TKW with kernel length and kernel width [19]. These results indicate that conditional QTL analysis of related traits is helpful for revealing the genetic relationships of closely related individual QTL and for clarifying the positive or negative genetic relationships of two traits at the level of a single QTL or gene [9] and [20].
    Some studies indicated that the conditional QTL method could also detect more QTL than the traditional QTL mapping method, especially with regard to the identification of important QTL/genes that increase one trait without affecting others. For instance, Guo et al. [21] investigated the relationship between yield and number of tillers per plant, grains per panicle and TKW using a population of 241 recombinant inbred lines (F9 RILs) derived from the elite hybrid rice cross ‘Zhenshan 97’ × ‘Minghui 63’ by unconditional and conditional QTL mapping methods. Similarly Yu and Chen [22]identified 36 QTL for water logging tolerance in ITMI wheat population and 10 QTL in an SHW-L1 × Chuanmai 32 (SC) population, and dissected the genetic relationships between QTL for total dry weight index and its components. Zhang [19] conducted a QTL analysis of kernel weight and provided a better understanding of the relationships between yield-contributing traits at the QTL level. These results provided a theoretical basis for application in marker-assisted selection (MAS) for grain yield improvement in wheat.
    In the present study the relationships among three major yield components were examined at the QTL/gene level using a DH population planted in different years and locations according to both unconditional and conditional QTL mapping methods. The aims were to 1) identify QTL for the three grain components conditioned on other traits, 2) analyse the relationships among the three grain components at the QTL/gene level, and 3) determine the important QTL regions controlling three yield components.

    2 Materials and methods

    2.1 Plant materials

    A doubled haploid (DH) population consisting of 168 lines produced from a cross between Chinese wheat cultivars Huapei 3 and Yumai 57 was used in this study. Huapei 3 is an elite variety with large panicles, large grains and medium number of spike-bearing tillers [23]. Yumai 57 has medium–large panicles, a large number of spike-bearing tillers, and can be cultivated under a wide range of environmental conditions [24]. Huapei 3 and Yumai 57 were released in 2006 [23] and 2003 [24], respectively.

    2.2 Field trials

    The parental lines, together with the DH population, were evaluated at three locations: Tai'an (36°57′ N, 116°36′ E), Jinan (36°71′ N, 117°09′ E) and Jiyuan (112°36′ E, 35°05′ N), and five environments: Tai'an in 2010–2011 (E1), Jinan in 2011–2012 (E2), Tai'an in 2011–2012 (E3), Jiyuan in 2011–2012 (E4), and Jinan in 2012–2013.
    All entries were planted in two replications at each location in randomized complete block designs in October 2010. At Tai'an all DH lines and parents were grown 2 m plots of four rows spaced 26 cm apart. The same materials were planted in four row plots of 2.7 m and 20 cm roe spacing, four row plots of 3 m and 25 cm roe spacing, and three row plots of 2.6 m and 20.0 cm row spacing, respectively, at Tai'an, Jinan and Jiyuan. The lines and parents were evaluated in four-row 3 m plots with row spacing of 25 cm apart at Jinan in October 2012. The population density at the different locations and environments was approximately 1.8 million per hectare. Field management was in accordance with local agronomic practices.
    Data for SN and KNPS were recorded at maturity from 10 randomly selected plants grown in the central rows of each plot before harvesting. TKW was measured from the same plants harvested from central rows of each plot.

    2.3 Genetic linkage map

    The genetic linkage map contained 323 markers (including 284 simple sequence repeat (SSR) loci, 37 expressed sequence tag (EST) loci, one inter-simple sequence repeat (ISSR) locus, and one high-molecular-weight glutenin subunit locus). These linked markers formed 24 linkage groups over 21 chromosomes [25].

    2.4 Data analysis and QTL mapping

    Simple correlation coefficients were calculated using SPSS version 19.0 software (SPSS, Chicago, USA). Unconditional QTL for SN, KNPS and TKW were detected using the inclusive composite interval mapping function of QTL IciMapping 3.2 software (Beijing, China) with stepwise regression and simultaneous consideration of all marker information (http://www. isbreeding.net/). The ‘Deletion’ command was used to delete missing phenotypic data.
    Data on conditional phenotypic values yhk(T1/T2) were obtained from QGA Station 1.0 (http://ibi.zju.edu.cn/software/Qga/index.htm) [9], where T1/T2 means for trait 1 conditioned on trait 2 (for example, SN | TKW = SN conditioned on TKW). Conditional QTL mapping was conducted using QTL IciMapping 3.2 software. For all QTL, the mapping parameters of each step and the probability of the stepwise regression were set at 1.0 cM and 0.001, respectively, for each mapping method. The threshold LOD scores were calculated using 1000 permutations, with a type I error of 0.05. The QTL LOD values below 2.5 were ignored to increase the accuracy and reliability of QTL detection.

    3 Results

    3.1 Phenotypic variation and correlation

    The means, standard deviation, maximum, and minimum values of SN, KNPS and TKW were calculated for all five environments (Table 1). Strong transgressive segregations for all three traits indicated control by multiple genes.
    Table 1. Phenotypic mean values of traits across five environments.
    TraitParent
    DH population (n = 168)
    Huapei 3Yumai 75MeanSDMinMax
    SN534.8722.0632.389.7432.4930.0
    KNPS40.644.140.03.630.751.9
    TKW44.240.744.14.533.252.1
    SN, spike number per m2; KNPS, kernel number per spike; and TKW, thousand-kernel weight (g). Mean, SD, Min and Max are the average, standard deviation, minimum and maximum of all observations for the DH population across the five environments.
    The Pearson correlation coefficients revealed significant negative correlations among SN, KNPS and TKW (Table 2). When TKW was conditioned on SN and KNPS, TKW was significantly negatively correlated with SN and KNPS. When KNPS was conditioned on SN and TKW, KNPS had significantly negative correlations with TKW. When SN was conditioned on KNPS and TKW, SN had a significantly negative correlation with TKW.
    Table 2. Phenotypic correlations among SN, KNPS and TKW.
    TraitCorrelation
    SNKNPS
    KNPS− 0.120
    TKW− 0.402⁎⁎− 0.264⁎⁎
    SN, spike number per m2; KNPS, kernel number per spike; and TKW, thousand-kernel weight (g).
    • ⁎⁎
      Significant at P ≤ 0.01.

    3.2 Unconditional and conditional QTL mapping of the three yield components

    A total of 92 QTL for SN, KNPS and TKW traits were detected, including 33 unconditional QTL and 59 conditional QTL, explaining 4.48–34.07% of the phenotypic variation (Table 3, Table 4 and Table 5; Fig. 1). These QTL were located in 17 chromosomes, except 3B, 3D, 5A and 7D. Fifty three QTL had positive additive effects, whereas 39 had negative additive effects.
    Table 3. Unconditional and conditional QTL for spike number per m2 (SN).
    QTLMarker intervalSN
    SN | TKWa
    SN | KNPSa
    Env bPositionPVE (%) cAdEnv bPositionPVE (%) cAdEnv bPositionPVE (%) cAd
    QSN-DH-1BXwmc406–Xbarc156E2326.8549.47
    QSN-DH-1D-1.1Xcfd19–Xwmc93E3459.7837.91
    QSN-DH-1D-2.1Xwmc429–Xcfd19E3396.7231.12E33811.4040.74
    QSN-DH-2AXbarc380–Xgwm636E325.72− 28.52
    QSN-DH-2BXgwm111–Xgdm14P1365.65− 25.67P1365.87− 26.07
    QSN-DH-2DXwmc170.2–Xgwm539E5679.10− 22.16E5678.98− 22.05
    QSN-DH-3A-1.1Xbarc86–Xwmc21E5905.7617.69E5905.7617.73
    QSN-DH-3A-2.1Xbarc356–Xwmc489.2E5977.4718.04
    QSN-DH-4AXwmc262–Xbarc343E179.27− 21.32
    QSN-DH-5BXgwm213–Xswes861.2E3587.04− 32.45
    QSN-DH-5DXbarc320–Xwmc215E36718.62− 51.91E36713.47− 43.50E36517.77− 49.89
    QSN-DH-6A-1.3Xbarc1055–Xwmc553E24712.83− 70.23E24711.03− 64.55
    E5438.95− 21.89E5438.93− 21.95
    P4512.23− 37.81P4513.49− 39.54
    QSN-DH-6A-2.1Xbarc1165–Xgwm82E4428.75− 46.27E4428.25− 44.86
    QSN-DH-6BXgwm58–Xwmc737E25810.26147.55E25810.12136.67
    QSN-DH-6D-1.1Xcfa2129–Xbarc080P1658.6733.18P1658.2532.23
    QSN-DH-6D-2.1Xswes679.1–Xcfa2129E514513.7727.68
    QSN-DH-7AXwmc530–Xcfa2123E3798.57− 34.46
    • a
      SN | TKW and SN | KNPS indicate spike number per m2 (SN) conditioned on thousand-kernel weight (TKW) and kernel number per spike (KNPS), respectively.
    • b
      Env, environment. E1 to E5 refer to the five environments tested and P is the mean across environments.
    • c
      PVE, phenotypic variation explained by the QTL.
    • d
      A, additive effect. Negative and positive values indicate alleles from Yumai 57 and Huapei 3, respectively.
    Table 4. Unconditional and conditional QTL for kernel number per spike (KNPS).
    QTLMarker intervalKNPS
    KNPS | TKWa
    KNPS | SNa
    Env bPositionPVE (%) cAdEnv bPositionPVE (%) cAdEnv bPositionPVE (%) cAd
    QKNPS-DH-1A-1.1Xwmc163–Xcfd59E5518.600.87E5518.470.86E5518.270.85
    QKNPS-DH-1A-2.1Xgwm498–Xcwem6.2P686.111.06
    QKNPS-DH-2AXwmc522–Xgwm448P7316.811.84P7315.361.75
    QKNPS-DH-2B-1.1Xbarc101–Xcwem55E2776.57− 2.08E2777.39− 2.19
    QKNPS-DH-2B-2.1Xwmc179–Xbarc373E46711.39− 1.56E4678.09− 1.28E46711.49− 1.58
    QKNPS-DH-2D-1.1Xcfd53–Xwmc18E536.230.72E525.810.69E526.180.72
    QKNPS-DH-2D-1.2Xbarc349.2–Xbarc349.1E37311.242.57E37214.912.98E37314.222.92
    P7211.621.46
    QKNPS-DH-3A-1.1Xwmc489.2–Xwmc489.3P986.74− 1.12
    QKNPS-DH-3A-2.2Xbarc356–Xwmc489.2E2966.88− 2.10E2968.05− 2.13P976.47− 1.14
    P977.17− 1.21
    QKNPS-DH-4AXwmc219–Xwmc776P365.19− 0.98
    QKNPS-DH-4D-1.1Xgwm194–Xcfa2173E4576.45− 1.19
    QKNPS-DH-4D-2.1Xcfe254–BE293342P1554.80− 0.94
    QKNPS-DH-6AXcfe179.1–Xswes170.2E51176.67− 0.74E51177.26− 0.77E51176.53− 0.74
    QKNPS-DH-6BXgwm58–Xwmc737P588.27− 2.82E3588.28− 4.64E3588.85− 4.79
    P588.29− 2.87P588.11− 2.78
    QKNPS-DH-7B-1.1Xgwm46–Xwmc402.1E32814.65− 2.95
    QKNPS-DH-7B-2.1Xbarc276.1–Xwmc396E33334.074.53E3339.392.38E3337.662.15
    b, c, d See footnotes to Table 3.
    • a
      KNPS | SN and KNPS | TKW indicate kernel number per spike (KNPS) conditioned on spike number per m2(SN) and thousand-kernel weight (TKW), respectively.
    Table 5. Unconditional and conditional QTL for thousand kernel weight (TKW).a
    QTLMarker intervalTKW
    TKW | KNPSa
    TKW | SNa
    Env bPositionPVE (%) cAdEnv bPositionPVE (%) cAdEnv bPositionPVE (%) cAd
    QTKW-DH-1AXcfd59–Xwmc402.2E4545.630.97
    QTKW-DH-1BXbarc061–Xwmc766E2829.551.57
    QTKW-DH-2B-1.2Xwmc179–Xbarc373E2676.901.41
    P6717.682.00
    QTKW-DH-2B-2.1Xwmc317–Xwmc445.2P896.84− 1.24
    QTKW-DH-2D-1.5Xwmc170.2–Xgwm539E16710.291.70E16712.721.80E16714.171.83
    E26711.381.83E26710.181.61E3679.481.73
    E3678.221.68E36711.381.91E46713.891.53
    E46710.571.37E46716.701.67P6712.311.58
    P677.761.30P6714.701.75
    QTKW-DH-3A-1.1Xwmc264–Xcfa2193E21378.721.59E21439.301.52E213010.571.65
    P1475.631.07P1357.821.25
    QTKW-DH-3A-2.1Xcfa2170–Xbarc51P1768.151.36
    QTKW-DH-4A-1.2Xwmc718–Xwmc262E467.841.18E466.701.05E2410.111.62
    E564.670.97E564.840.98E468.081.15
    QTKW-DH-4BXwmc413–Xcfd39.2E585.081.00E585.161.01
    QTKW-DH-4D-1.1Xbarc334–Xwmc331E108.801.44
    QTKW-DH-4D-2.1Xgwm194–Xcfa2173E2575.30− 1.17
    QTKW-DH-5BXgwm213–Xswes861.2E5586.92− 1.22E5586.75− 1.20
    QTKW-DH-5B2Xbarc36–Xbarc140E1128.58− 1.53E11113.06− 1.82
    E51512.35− 1.56E51412.32− 1.56
    QTKW-DH-6A-1.2Xbarc1165–Xgwm82E1429.091.58E2428.751.48
    E2428.351.56
    QTKW-DH-6A-2.4Xbarc1055–Xwmc553E34514.902.26E34310.591.81E3439.691.72
    E4436.181.05E54511.431.51
    E54511.761.53P4311.151.52
    P4515.021.85
    QTKW-DH-6DXcfd13–Xbarc054E25419.25− 2.22
    QTKW-DH-7BXgwm333–Xwmc10E5764.48− 0.97E5764.59− 0.98E5768.77− 1.22
    b, c, d See footnotes to Table 3.
    • a
      TKW | KNPS and TKW | SN indicate thousand-kernel weight (TKW) conditioned on kernel number per spike (KNPS) and spike number per m2 (SN), respectively.
    Fig. 1. Genome locations for conditional and unconditional QTL for SN, KNPS and TKW.

    3.2.1 Unconditional and conditional QTL mapping for SN

    For SN, ten unconditional QTL were detected in the five environments accounting for 5.65–18.62% of the phenotypic variation (Table 3). Four QTL, QSN-DH-1D-1.1, QSN-DH-3A, QSN-DH-6B and QSN-DH-6D, showed positive additive effects indicating favorable alleles derived from Huapei 3, whereas six QTL, QSN-DH-2A, QSN-DH-2B, QSN-DH-2D, QSN-DH-5D, QSN-DH-6A-1.3 and QSN-DH-6A-2.1, showed negative additive effects, indicating that the favorable alleles were from Yumai 57.
    For SN | TKW, eight conditioned QTL were detected in the five environments, explaining 6.85–13.77% of the phenotypic variation (Table 3). Of these, QSN-DH-5Dand QSN-DH-6B were detected by both the unconditional and conditional analysis, indicating that they partly influenced SN by the variation in TKW. Six QTL, QSN-DH-1B, QSN-DH-1D-2.1, QSN-DH-3A-2.1, QSN-DH-5B, QSN-DH-6D-2.1 and QSN-DH-7A, were detected only by conditional QTL analysis, indicating that the effects of these QTL for SN were completely determined by TKW.
    For SN | KNPS, nine conditional QTL were detected, accounting for 5.76–13.49% of the phenotypic variation. Among them, seven QTL were detected by both unconditional and conditional QTL mapping. The additive effects of QSN-DH-2B and QSN-DH-3A-1.1 were similar, indicating that these QTL only affected the SN without reducing KNPS. Five QTL influenced SN by affecting KNPS. Two conditional QTL were not detected in the unconditional QTL analysis, indicating that phenotypic expression of the two QTL might be masked by their effects on KNPS. Three unconditional QTL, QSN-DH-1D-1.1, QSN-DH-2A and QSN-DH-6B, were not detected when KNPS was removed, indicating that the effects of these QTL on SN were caused by their effects on KNPS.
    Two QTL, QSN-DH-6A-1.3 and QSN-DH-5D, were detected both in unconditional and conditional QTL analysis when they were conditioned on KNPS and TKW. QSN-DH-1D-2.1 was detected when conditioned on KNPS and TKW, but was not found in unconditional QTL analysis. These results indicated that the phenotypic expression of this QTL was masked by KNPS and TKW.

    3.2.2 Unconditional and conditional QTL mapping for KNPS

    Eleven QTL controlling KNPS were detected using unconditional QTL mapping, explaining 6.23–34.07% of the phenotypic variation (Table 4). Six QTL QKNPS-DH-1A, QKNPS-DH-2A, QKNPS-DH-2D-1.1, QKNPS-DH-2D-1.2, QKNPS-DH-3A-1.2 and QKNPS-DH-7B-2.1, had positive additive effects, indicating that the favorable alleles were derived from Huapei 3, whereas five QTL, QKNPS-DH-2B-1.1, QKNPS-DH-2B-2.1, QKNPS-DH-6A, QKNPS-DH-6B and QKNPS-DH-7B-1.1, had negative additive effects, indicating that the favorable alleles were from Yumai 57.
    For KNPS | TKW, twelve QTL were detected in the five environments explaining 4.80–14.91% of the phenotypic variation (Table 4). Eight QTL, QKNPS-DH-3A-2.2, QKNPS-DH-7B-2.1, QKNPS-DH-2D-1.2, QKNPS-DH-6B, QKNPS-DH-2B-2.1, QKNPS-DH-1A-1.1, QKNPS-DH-2D-1.1 and QKNPS-DH-6A, were detected in both unconditional and conditional analysis, indicating that the QTL partly influenced KNPS by increasing or decreasing variation in TKW. Four QTL QKNPS-DH-1A-2.1, QKNPS-DH-3A-1.1, QKNPS-DH-4A and QKNPS-DH-4D-2.1, were detected only by conditional QTL analysis, indicating that their effects on KNPS were completely determined by TKW.
    For KNPS | SN, eleven QTL were detected in the five environments, accounting for 6.45–15.36% of the phenotypic variation (Table 4). Ten QTL, QKNPS-DH-2B-1.1, QKNPS-DH-7B-2.1, QKNPS-DH-2D-1.2, QKNPS-DH-6B, QKNPS-DH-2B-2.1, QKNPS-DH-4D-1.1, QKNPS-DH-1A-1.1, QKNPS-DH-2D-1.1, QKNPS-DH-6A and QKNPS-DH-2A, were detected in both unconditional and conditional QTL analysis. QKNPS-DH-4D-1.1 was not detected in unconditional QTL analysis, indicating that its expression was masked by TKW. QKNPS-DH-7B-2.1, which is located in the Xbarc276.1–Xwmc396 region on chromosome 7B, had the greatest genetic contribution to KNPS, explaining 34.07% of the phenotypic variance. The positive allele of this QTL was derived from Huapei 3.

    3.2.3 Unconditional and conditional QTL mapping for TKW

    For TKW, twelve QTL were detected by unconditional QTL mapping, explaining 4.48–17.68% of the total trait variation (Table 5). Four QTL QTKW-DH-2B-2.1, QTKW-DH-5Band QTKW-DH-7B, had negative additive effects, whereas eight, QTKW-DH-2B-1.2, QTKW-DH-2D-1.5, QTKW-DH-3A-1.1, QTKW-DH-3A-2.1, QTKW-DH-4A-1.2, QTKW-DH-4B, QTKW-DH-5B2, QTKW-DH-6A-1.2 and QTKW-DH-6A-2.4, had positive additive effects, with favorable alleles from Huapei 3.
    For TKW | KNPS, ten QTL were detected, explaining 4.59–16.70% of the phenotypic variation (Table 5). Of these, nine QTL were detected by both unconditional and conditional analysis. QTKW-DH-2B-1.2, QTKW-DH-2B-2.1 and QTKW-DH-3A-2.1were not detected when conditioned on KNPS, indicating that these QTL influenced TKW through variation in KNPS. QTKW-DH-1A was not detected in unconditional QTL analysis. The results suggest that its phenotypic expression might be masked completely by its effects on KNPS.
    For TKW | SN, nine QTL were detected. Of these, QTKW-DH-1B, QTKW-DH-4D-1.1, QTKW-DH-4D-2.1 and QTKW-DH-6D were not detected in unconditional QTL analysis, suggesting that the phenotypic expression of these QTL was masked by their effects on SN. QTKW-DH-2D-1.5 and QTKW-DH-7B were detected in unconditional and conditional QTL analysis, indicating that the two QTL partly influenced TKW through variation of SN. The other three QTL also partly influenced the TKW by affecting SN.

    4 Discussion

    4.1 The differences in unconditional and conditional QTL analysis

    The relationships between yield and its components are very complex due to varietal diversity of and environmental differences. Genes controlling SN, KNPS and TKW are considered to have a ‘pleiotropic effect’ or ‘multigenic effect’, as they do not function in isolation. Zhu [9] and Wu et al. [20] introduced conditional QTL analysis based on the net effect of a QTL, which is helpful for detailed investigation of the genetic effects and can improve the sensitivity and accuracy of QTL mapping. In this study, SN, KNPS and TKW were analysed using both unconditional and conditional QTL mapping methods. Thirty-three unconditional QTL and 59 conditional QTL were detected. These QTL could be divided into 4 types for each trait. To illustrate using the example of KNPS conditioned on TKW): (1) QTL that were detected only in unconditional QTL analysis on KNPS were detected when the genetic effect of TKW was excluded. This pattern indicates that the effects of these QTL on KNPS are completely dependent on their effects on TKW; (2) QTL that were detected in unconditional and conditional QTL analysis with very similar genetic effect values improved KNPS while not affecting the TKW; (3) QTL that were detected in unconditional and conditional QTL analysis with quite different genetic effects influenced KNPS through variation in TKW; and (4) QTL that were detected only in conditional QTL analysis had effects indicating that their phenotypic expression was masked by their effects on TKW. These QTL were detected only by conditional QTL analysis when the influence of TKW was excluded [10] and [17]. These QTL could be used to select high-yielding wheat cultivars with large spikes and a large number of heavy grains.

    4.2 Stability of QTL

    In the present study, eight QTL, QKNPS-DH-2D-1.2, QKNPS-DH-3A-2.2, QTKW-DH-2B-1.2, QTKW-DH-4A-1.2, QTKW-DH-6A-1.2, QSN-DH-6A-1.3, QTKW-DH-6A-2.4 and QTKW-DH-2D-1.5, were detected repeatedly in two or more environments. For example, QTKW-DH-2D-1.5 was detected in all five environments. The genetic contributions of this QTL to TKW in three environments (E1, E2 and E4) was more than 10%, indicating that QTKW-DH-2D-1.5 might be a major QTL consistently expressed in different environments. QTKW-DH-2D-1.5, located in the Xwmc170.2–Xgwm539interval, had markers in common with QTKW.ncl-2D.2 (Xwmc181–Xwmc41) and Xgwm539 [8]. QTKW-DH-6A-2.4, detected in four environments (E3–E5, P), was located in the interval Xbarc1055–Xwmc553 on chromosome 6A and accounted for 14.90%, 6.18%, 11.76% and 15.02% of total variation of TKW for E3, E4, E5 and P, respectively. It was located in the same region as QTgw.wa-6AL.e3 [26] and qTgw6Ab [27]. These QTL were likely the same locus derived from of Huapei 3. These QTL were relatively stable and had the potential to be used in molecular marker-assisted breeding.

    4.3 Comparison of the present study with previous work

    It is widely accepted that detection of stable, major QTL has high significance for marker-assisted selection in different environments. In the present study eight QTL detected by unconditional and conditional analysis were located in similar chromosome intervals of chromosomes as detected in previous studies.
    QSN-DH-1D-1.1, located in region Xcfd19–Xwmc93 on chromosome 1D, explained 9.78% of the phenotypic variation in SN. This interval includes marker Xwmc93 for QSn.sdau-1A.e4, which was located in the region of Xwmc93–Xgwm135. [28]. QSN-DH-1D and QSn.sdau-1A.e4 were likely the same QTL controlling SN.
    QKNPS-DH-2B-2.1 was located in interval Xwmc179–Xbarc373 on chromosome 2B. This QTL was close to QKer.macs-2B (interval Xbarc55–Xbarc167) with the distance between Xbarc167 and Xwmc179 being 1 cM in the linkage map of Patil et al. [4].
    QSN-DH-2D, located in region Xwmc170.2–Xgwm539, had markers in common with QTKW.ncl-2D.2 (Xwmc181–Xwmc41) and marker Xgwm539 [8]. It was detected in both unconditional and conditional QTL analysis, and the absolute value of the additive effects varied only slightly. This locus controlled both KNPS and SN. This QTL was located in a region different from qSgn2D (Xgwm261–Xgwm296) [27] indicating that it may be a different QTL. A QTL at the same or a similar location on chromosome 2D detected by Börner et al. [6] controlled yield and was associated with photoperiod gene Ppd-D1. This QTL was speculated to control both yield and photoperiod. Rht8, which is located on chromosome 2DS, was reported to increase KNPS [29]. In the present study, we also detected a QTL that controlled SN, KNPS and TKW. Further investigations are required to confirm the relationship of these QTL with Rht8.

    4.4 Implications of QTL for wheat improvement

    Unconditional and conditional mapping methods help to reveal the genetic basis of target traits and relationships among relevant traits. The findings can be used in MAS for precise selection of a desirable trait [10] or for simultaneous improvements of several target traits [30]. In the present study, QKNPS-DH-1A-1.1, QKNPS-DH-2D-1.1and QKNPS-DH-6A, explaining 8.60, 6.23 and 6.67% of the phenotypic variation, respectively, increased KNPS without decreasing SN and TKW. QSN-DH-2B and QSN-DH-3A-1.1, accounting for 5.65% and 5.76% of the phenotypic variation, respectively, improved SN without decreasing KNPS. QKNPS-DH-2B-2.1 accounting for 11.39% of the phenotypic variation improved KNPS without decreasing SN. QTKW-DH-4B, QTKW-DH-5B and QTKW-DH-7B, which explained 5.08%, 6.92% and 4.48% of the phenotypic variation, respectively, increased TKW without decreasing KNPS. These findings may be helpful in resolving contradictions among KNPS, SN and TKW and may have theoretical and practical importance for development of high yielding wheat varieties.

    5 Conclusion

    Thirty-three unconditional QTL and 59 conditional QTL controlling SN, KNPS and TKW were detected. QSN-DH-2B and QSN-DH-3A-1.1 improved SN without decreasing KNPS. QKNPS-DH-2B-2.1 improved KNPS without decreasing SN. QKNPS-DH-1A-1.1, QKNPS-DH-2D-1.1 and QKNPS-DH-6A influenced KNPS, TKW and SN. The overall analysis showed that improvement of KNPS had no negative effects on TKW and SN. QTKW-DH-4B, QTKW-DH-5B and QTKW-DH-7B improved TKW without decreasing KNPS. These QTL could improve one or two yield traits with only slight or no detriment effects on other yield components. Their use may help to reduce the problem of negative correlations among the three yield component traits. The findings could support molecular breeding of wheat and could be useful for breeders attempting to combine genes for high-yielding traits in developing wheat varieties with the best balance of KNPS, TKW and SN.

    Acknowledgments

    This work was funded by the National Natural Science Foundation of China (No. 31171554), Major Projects for Development of New Genetically Modified Crops (No. 2011ZX08002-003), Fund for the Doctoral Program of Higher Education of China (No. 20123702110016), and the Natural Science Foundation of Shandong (No. ZR2015CM036).

    References

      • [1]
      • X.Q. Huang, H. Kempf, M.W. Ganal, M.S. Röder
      • Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.)
      • Theor. Appl. Genet., Volume 109, 2004, pp. 933–943
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (121)
      • [2]
      • F. Marza, G.H. Bai, B. Carver, W.C. Zhou
      • Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark
      • Theor. Appl. Genet., Volume 112, 2006, pp. 688–698
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (103)
      • [3]
      • B. Heidari, B.E. Sayed-Tabatabaei, G. Saeidi, M. Kearsey, K. Suenaga
      • Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat
      • Genome, Volume 54, 2011, pp. 517–527
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (19)
      • [4]
      • R.M. Patil, S.A. Tamhankar, M.D. Oak, A.L. Raut, B.K. Honrao, V.S. Rao, S.C. Misra
      • Mapping of QTL for agronomic traits and kernel characters in durum wheat (Triticum durum Desf.)
      • Euphytica, Volume 190, 2013, pp. 117–129
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (8)
      • [5]
      • M.S. Lopes, M.P. Reynolds, C.L. McIntyre, K.L. Mathews, M.R.J. Kamali, M. Mossad, Y. Feltaous, I.S.A. Tahir, R. Chatrath, F. Ogbonnaya, M. Baum
      • QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions
      • Theor. Appl. Genet., Volume 126, 2013, pp. 971–984
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (11)
      • [6]
      • A. Börner, E. Schumann, A. Fürste, H. Coster, B. Leithold, M.S. Roder, W.E. Weber
      • Mapping of quantitative trait locus determining agronomic important characters in hexaploid wheat (Triticum aestivum L.)
      • Theor. Appl. Genet., Volume 105, 2002, pp. 921–936
      • View Record in Scopus
        Citing articles (260)
      • [7]
      • B. Narasimhamoorthy, B.S. Gill, A.K. Fritz, J.C. Nelson, G.L. Brown-Guedira
      • Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population
      • Theor. Appl. Genet., Volume 112, 2006, pp. 787–796
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (81)
      • [8]
      • P. Ramya, A. Chaubal, K. Kulkarni, L. Gupta, N. Kadoo, H.S. Dhaliwal, P. Chhuneja, M. Lagu, V. Gupta
      • QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.)
      • J. Appl. Genet., Volume 51, 2010, pp. 421–429
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (39)
      • [9]
      • J. Zhu
      • Analysis of conditional genetic effects and variance components in developmental genetics
      • Genetics, Volume 141, 1995, pp. 1633–1639
      • View Record in Scopus
        Citing articles (171)
      • [10]
      • G.F. Liu, J. Yang, H.M. Xu, Y. Hayat, J. Zhu
      • Genetic analysis of grain yield conditioned on its component traits in rice (Oryza sativa L.)
      • Aust. J. Agric. Res., Volume 59, 2008, pp. 189–195
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (13)
      • [11]
      • H. Jiang, L. Jiang, L.B. Guo, Z.Y. Gao, D.L. Zeng, L.H. Zhu, G.H. Liang, Q. Qian
      • Conditional and unconditional mapping of quantitative trait loci underlying plant height and tiller number in rice (Oryza sativa L.) grown at two nitrogen levels
      • Prog. Nat. Sci., Volume 18, 2008, pp. 1539–1547
      • Article
         | 
         PDF (557 K)
      • [12]
      • B. Liu, L. Zhao, K.P. Zhang, Z.L. Zhu, B. Tian, J.C. Tian
      • Genetic dissection of plant height at different growth stages in common wheat
      • Sci. Agric. Sin., Volume 43, 2010, pp. 4562–4570 (in Chinese with English abstract)
      • View Record in Scopus
        Citing articles (4)
      • [13]
      • Z.H. Wang, X.S. Wu, Q. Ren, X.P. Chang, R.Z. Li, R.L. Jing
      • QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.)
      • Euphytica, Volume 174, 2010, pp. 447–458
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (33)
      • [14]
      • F. Cui, J. Li, A.M. Ding, C.H. Zhao, L. Wang, X.Q. Wang, S.S. Li, Y.G. Bao, X.F. Li, D.S. Feng, L.R. Kong, H.G. Wang
      • Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat
      • Theor. Appl. Genet., Volume 122, 2011, pp. 1517–1536
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (51)
      • [15]
      • L. Wang, F. Cui, J.P. Wang, J. Li, A.M. Ding, C.H. Zhao, X.F. Li, D.S. Feng, J.R. Gao, H.G. Wang
      • Conditional QTL mapping of protein content in wheat with respect to grain yield and its components
      • J. Genet., Volume 91, 2012, pp. 303–312
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (5)
      • [16]
      • H. Zhang, F. Cui, L. Wang, J. Li, A.M. Ding, C.H. Zhao, Y.G. Bao, Q.P. Yang, H.G. Wang
      • Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations
      • J. Genet., Volume 29, 2013, pp. 213–231
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (13)
      • [17]
      • J. Zhao, H.C. Becker, D. Zhang, Y. Zhang, W. Ecke
      • Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield
      • Theor. Appl. Genet., Volume 113, 2006, pp. 33–38
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (85)
      • [18]
      • Z.Y. Deng, L. Zhao, B. Liu, K. Zhang, J.S. Chen, H.L. Qu, C.L. Sun, Y.X. Zhang, J.C. Tian
      • Conditional QTL mapping of sedimentation volume on seven quality traits in common wheat
      • J. Integr. Agric., Volume 12, 2013, pp. 2125–2133
      • Article
         | 
         PDF (412 K)
         | 
        View Record in Scopus
        Citing articles (1)
      • [19]
      • X.Y. Zhang, Z.Y. Deng, H.R. Wang, J.F. Li, J.C. Tian
      • Unconditional and conditional QTL analysis of kernel weight related traits in wheat (Triticum aestivum L.) in multiple genetic backgrounds
      • Genetica, Volume 142, 2014, pp. 371–379
      • View Record in Scopus
         | 
        Full Text via CrossRef
      • [20]
      • W.R. Wu, W.M. Li, H.R. Lu
      • Strategy of dynamic mapping of quantitative trait loci
      • J. Biomath., Volume 12, 1997, pp. 490–498
      • View Record in Scopus
        Citing articles (1)
      • [21]
      • L.B. Guo, Y.Z. Xing, H.W. Mei, C.G. Xu, C.H. Shi, P. Wu, L.J. Luo
      • Dissection of component QTL expression in yield formation in rice
      • Plant Breed., Volume 124, 2005, pp. 127–132
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (30)
      • [22]
      • M. Yu, G.Y. Chen
      • Conditional QTL mapping for waterlogging tolerance in two RIL populations of wheat
      • Springer Plus, Volume 2, 2013, pp. 1–7
      • View Record in Scopus
        Citing articles (7)
      • [23]
      • Y. Hai, M.H. Kang
      • Breeding of a new wheat variety Huapei 3 with high yield and early maturity
      • J. Henan Agric. Sci., Volume 5, 2007, pp. 36–37 (in Chinese with English abstract)
      • View Record in Scopus
        Citing articles (17)
      • [24]
      • C.Q. Guo, Z.A. Bai, P.A. Liao, W.K. Jin
      • New high quality and yield wheat variety Yumai 57
      • China Seed Ind., Issue 4, 2004, p. 54 (in Chinese)
      • View Record in Scopus
        Citing articles (1)
      • [25]
      • L. Zhao, K.P. Zhang, B. Liu, Z.Y. Deng, H.L. Qu, J.C. Tian
      • A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat
      • Euphytica, Volume 174, 2010, pp. 325–335
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (17)
      • [26]
      • J.S. Wang, W.H. Liu, H. Wang, L.H. Li, J. Wu, X.M. Yang, X.Q. Li, A.N. Gao
      • QTL mapping of yield-related traits in the wheat germplasm 3228
      • Euphytica, Volume 177, 2011, pp. 277–292
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (20)
      • [27]
      • K.P. Zhang, X.B. Xu, J.C. Tian
      • QTL mapping for grain yield and spike related traits in common wheat
      • Acta Agron. Sin., Volume 35, 2009, pp. 270–278 (in Chinese with English abstract)
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (9)
      • [28]
      • S.S. Li, J.Z. Jia, X.Y. Wei, X.C. Zhang, L.Z. Li, H.M. Chen, Y.D. Fan, H.Y. Sun, X.H. Zhao, T.D. Lei, Y.F. Xu, F.S. Jiang, H.G. Wang, L.H. Li
      • A intervarietal genetic map and QTL analysis for yield traits in wheat
      • Mol. Breed., Volume 20, 2007, pp. 167–178
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (95)
      • [29]
      • G.J. Rebetzke, R.A. Richards, V.M. Fischer, B.J. Mickelson
      • Breeding long coleoptile, reduced height wheats
      • Euphytica, Volume 106, 1999, pp. 159–168
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (73)
      • [30]
      • Y.L. Li, Y.B. Dong, D.Q. Cui, Y.Z. Wang, Y.Y. Liu, M.G. Liu, X.H. Li
      • The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis
      • Euphytica, Volume 163, 2008, pp. 345–351
      • View Record in Scopus
         | 
        Full Text via CrossRef
        Citing articles (14)
    • Peer review under responsibility of Crop Science Society of China and Institute of Crop Science, CAAS.
    • ⁎ 
      Corresponding author. Tel./fax: + 86 538 8242040.

    For further details log on website :
    http://www.sciencedirect.com/science/article/pii/S2214514116300150
    at June 30, 2016
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

    No comments:

    Post a Comment

    Newer Post Older Post Home
    Subscribe to: Post Comments (Atom)

    Advantages and Disadvantages of Fasting for Runners

    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...

    • Pengalaman bekerja sebagai kerani kilang.
      Assalamualaikum dan salam sejahtera chu olls.     Alhamdulillah sudah seminggu saya melalui pengalaman bermakna ini. Sebagai seorang pel...
    • MIDA- INDUSTRI BERASASKAN KAYU
      Industri berasaskan kayu di Malaysia terdiri daripada  Kayu bergergaji; Venir dan produk panel yang termasuk papan lapis dan produk ...
    • Advantages and Disadvantages of Fasting for Runners
      Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...
    • UKIRAN KAYU DALAM MASYARAKAT MELAYU
      Seni ukiran kayu di kalangan masyarakat Melayu bukan sahaja terdapat pada rumah-rumah tetapi penjelmaan dan penerapannya terdapat pada is...
    • Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia
      International Journal of Ecology Volume 2017 (2017), Article ID 3985631, 10 pages https://doi.org/10.1155/2017/3985631 Author Evgeny  ...
    • Diploma Teknologi Berasaskan Kayu
      LATARBELAKANG POLITEKNIK KOTA KINABALU Politeknik Kota Kinabalu merupakan politeknik yang ketujuh ditubuhkan oleh Kementerian Pendidikan...
    • DIPLOMA REKA BENTUK PERABUT
      Sijil Teknologi Diploma Rekabentuk Perabot Kod Kursus :  K18 ...
    • Motif, Corak dan Ragi Tenun Melayu Riau
      Author MELAYU Riau kaya dengan khazanah budayanya. Antaranya yang amat menonjol adalah motif ornamen Melayunya, yang banyak dipakai untuk ...
    • SISTEM PENGURUSAN HUTAN
      Polisi dan Strategi Untuk memastikan HSK diurus secara berkekalan, "Dasar dan Strategi Pengurusan Hutan untuk Semenanjung ...
    • 5 Jenama Foundation Terbaik, Beli Di Farmasi Je!
      Beberapa minggu sudah, penulis pernah mencadangkan beberapa jenama maskara terbaik yang mudah didapati pada harga berpatutan dari farmas...

    nuffnang ads

    Search This Blog

    Pages

    • Home

    About Me

    Unknown
    View my complete profile

    Blog Archive

    • ►  2018 (371)
      • ►  June (17)
        • ►  Jun 22 (8)
        • ►  Jun 12 (1)
        • ►  Jun 11 (2)
        • ►  Jun 05 (6)
      • ►  May (6)
        • ►  May 31 (6)
      • ►  April (75)
        • ►  Apr 30 (1)
        • ►  Apr 27 (1)
        • ►  Apr 26 (15)
        • ►  Apr 25 (10)
        • ►  Apr 24 (11)
        • ►  Apr 18 (2)
        • ►  Apr 12 (4)
        • ►  Apr 10 (5)
        • ►  Apr 09 (9)
        • ►  Apr 05 (17)
      • ►  March (65)
        • ►  Mar 27 (7)
        • ►  Mar 22 (2)
        • ►  Mar 20 (4)
        • ►  Mar 13 (14)
        • ►  Mar 12 (11)
        • ►  Mar 08 (7)
        • ►  Mar 06 (1)
        • ►  Mar 05 (1)
        • ►  Mar 01 (18)
      • ►  February (103)
        • ►  Feb 28 (25)
        • ►  Feb 27 (27)
        • ►  Feb 26 (10)
        • ►  Feb 20 (1)
        • ►  Feb 19 (9)
        • ►  Feb 09 (13)
        • ►  Feb 06 (6)
        • ►  Feb 05 (5)
        • ►  Feb 02 (7)
      • ►  January (105)
        • ►  Jan 25 (11)
        • ►  Jan 23 (5)
        • ►  Jan 16 (6)
        • ►  Jan 15 (9)
        • ►  Jan 14 (7)
        • ►  Jan 10 (1)
        • ►  Jan 09 (2)
        • ►  Jan 08 (4)
        • ►  Jan 04 (24)
        • ►  Jan 03 (2)
        • ►  Jan 02 (21)
        • ►  Jan 01 (13)
    • ►  2017 (6160)
      • ►  December (11)
        • ►  Dec 30 (11)
      • ►  November (31)
        • ►  Nov 26 (9)
        • ►  Nov 07 (8)
        • ►  Nov 06 (3)
        • ►  Nov 01 (11)
      • ►  October (345)
        • ►  Oct 31 (4)
        • ►  Oct 25 (42)
        • ►  Oct 24 (5)
        • ►  Oct 23 (15)
        • ►  Oct 22 (3)
        • ►  Oct 18 (7)
        • ►  Oct 17 (27)
        • ►  Oct 16 (14)
        • ►  Oct 15 (6)
        • ►  Oct 13 (18)
        • ►  Oct 12 (44)
        • ►  Oct 11 (57)
        • ►  Oct 09 (47)
        • ►  Oct 06 (14)
        • ►  Oct 05 (1)
        • ►  Oct 04 (13)
        • ►  Oct 03 (17)
        • ►  Oct 02 (11)
      • ►  September (186)
        • ►  Sept 29 (3)
        • ►  Sept 26 (7)
        • ►  Sept 25 (18)
        • ►  Sept 21 (29)
        • ►  Sept 20 (10)
        • ►  Sept 19 (11)
        • ►  Sept 18 (2)
        • ►  Sept 14 (19)
        • ►  Sept 13 (28)
        • ►  Sept 11 (3)
        • ►  Sept 10 (15)
        • ►  Sept 08 (5)
        • ►  Sept 06 (22)
        • ►  Sept 05 (14)
      • ►  August (158)
        • ►  Aug 29 (10)
        • ►  Aug 28 (73)
        • ►  Aug 27 (2)
        • ►  Aug 21 (4)
        • ►  Aug 18 (17)
        • ►  Aug 17 (4)
        • ►  Aug 14 (13)
        • ►  Aug 11 (5)
        • ►  Aug 10 (4)
        • ►  Aug 09 (7)
        • ►  Aug 08 (1)
        • ►  Aug 06 (3)
        • ►  Aug 04 (2)
        • ►  Aug 03 (13)
      • ►  July (290)
        • ►  Jul 26 (9)
        • ►  Jul 25 (7)
        • ►  Jul 24 (25)
        • ►  Jul 23 (5)
        • ►  Jul 21 (13)
        • ►  Jul 18 (19)
        • ►  Jul 17 (18)
        • ►  Jul 14 (17)
        • ►  Jul 13 (75)
        • ►  Jul 12 (10)
        • ►  Jul 11 (64)
        • ►  Jul 10 (26)
        • ►  Jul 09 (2)
      • ►  June (522)
        • ►  Jun 30 (1)
        • ►  Jun 27 (3)
        • ►  Jun 22 (13)
        • ►  Jun 21 (41)
        • ►  Jun 20 (3)
        • ►  Jun 19 (68)
        • ►  Jun 16 (33)
        • ►  Jun 15 (87)
        • ►  Jun 13 (25)
        • ►  Jun 12 (26)
        • ►  Jun 09 (20)
        • ►  Jun 08 (60)
        • ►  Jun 07 (54)
        • ►  Jun 06 (53)
        • ►  Jun 05 (35)
      • ►  May (684)
        • ►  May 31 (6)
        • ►  May 22 (3)
        • ►  May 21 (14)
        • ►  May 20 (12)
        • ►  May 19 (3)
        • ►  May 18 (26)
        • ►  May 17 (63)
        • ►  May 16 (27)
        • ►  May 15 (25)
        • ►  May 14 (16)
        • ►  May 07 (9)
        • ►  May 06 (26)
        • ►  May 05 (74)
        • ►  May 04 (126)
        • ►  May 03 (51)
        • ►  May 02 (153)
        • ►  May 01 (50)
      • ►  April (759)
        • ►  Apr 29 (56)
        • ►  Apr 28 (37)
        • ►  Apr 27 (67)
        • ►  Apr 26 (87)
        • ►  Apr 25 (6)
        • ►  Apr 10 (4)
        • ►  Apr 09 (5)
        • ►  Apr 08 (78)
        • ►  Apr 07 (57)
        • ►  Apr 06 (52)
        • ►  Apr 05 (53)
        • ►  Apr 04 (43)
        • ►  Apr 03 (94)
        • ►  Apr 02 (28)
        • ►  Apr 01 (92)
      • ►  March (1744)
        • ►  Mar 31 (90)
        • ►  Mar 30 (74)
        • ►  Mar 29 (58)
        • ►  Mar 28 (50)
        • ►  Mar 27 (95)
        • ►  Mar 26 (58)
        • ►  Mar 25 (98)
        • ►  Mar 24 (94)
        • ►  Mar 23 (77)
        • ►  Mar 22 (43)
        • ►  Mar 21 (54)
        • ►  Mar 20 (43)
        • ►  Mar 19 (88)
        • ►  Mar 18 (65)
        • ►  Mar 17 (63)
        • ►  Mar 16 (94)
        • ►  Mar 15 (79)
        • ►  Mar 14 (35)
        • ►  Mar 11 (10)
        • ►  Mar 10 (43)
        • ►  Mar 09 (40)
        • ►  Mar 08 (27)
        • ►  Mar 07 (40)
        • ►  Mar 06 (62)
        • ►  Mar 05 (48)
        • ►  Mar 04 (63)
        • ►  Mar 03 (54)
        • ►  Mar 02 (13)
        • ►  Mar 01 (86)
      • ►  February (715)
        • ►  Feb 28 (10)
        • ►  Feb 27 (61)
        • ►  Feb 26 (31)
        • ►  Feb 24 (22)
        • ►  Feb 23 (31)
        • ►  Feb 22 (42)
        • ►  Feb 21 (30)
        • ►  Feb 20 (42)
        • ►  Feb 19 (43)
        • ►  Feb 18 (46)
        • ►  Feb 17 (39)
        • ►  Feb 16 (39)
        • ►  Feb 15 (24)
        • ►  Feb 14 (54)
        • ►  Feb 13 (25)
        • ►  Feb 12 (78)
        • ►  Feb 10 (53)
        • ►  Feb 09 (22)
        • ►  Feb 01 (23)
      • ►  January (715)
        • ►  Jan 30 (25)
        • ►  Jan 28 (19)
        • ►  Jan 27 (36)
        • ►  Jan 26 (27)
        • ►  Jan 24 (27)
        • ►  Jan 22 (22)
        • ►  Jan 21 (58)
        • ►  Jan 20 (20)
        • ►  Jan 19 (30)
        • ►  Jan 18 (39)
        • ►  Jan 17 (26)
        • ►  Jan 16 (36)
        • ►  Jan 15 (62)
        • ►  Jan 14 (22)
        • ►  Jan 13 (20)
        • ►  Jan 12 (33)
        • ►  Jan 11 (32)
        • ►  Jan 10 (26)
        • ►  Jan 05 (11)
        • ►  Jan 04 (22)
        • ►  Jan 03 (35)
        • ►  Jan 02 (34)
        • ►  Jan 01 (53)
    • ▼  2016 (6885)
      • ►  December (986)
        • ►  Dec 31 (12)
        • ►  Dec 30 (23)
        • ►  Dec 29 (15)
        • ►  Dec 28 (29)
        • ►  Dec 27 (32)
        • ►  Dec 26 (29)
        • ►  Dec 25 (39)
        • ►  Dec 24 (43)
        • ►  Dec 23 (29)
        • ►  Dec 22 (28)
        • ►  Dec 21 (46)
        • ►  Dec 20 (28)
        • ►  Dec 19 (36)
        • ►  Dec 18 (14)
        • ►  Dec 17 (24)
        • ►  Dec 16 (10)
        • ►  Dec 15 (43)
        • ►  Dec 14 (55)
        • ►  Dec 13 (38)
        • ►  Dec 12 (45)
        • ►  Dec 11 (26)
        • ►  Dec 10 (48)
        • ►  Dec 09 (34)
        • ►  Dec 08 (22)
        • ►  Dec 07 (29)
        • ►  Dec 06 (15)
        • ►  Dec 05 (45)
        • ►  Dec 04 (38)
        • ►  Dec 03 (41)
        • ►  Dec 02 (41)
        • ►  Dec 01 (29)
      • ►  November (600)
        • ►  Nov 30 (38)
        • ►  Nov 29 (36)
        • ►  Nov 28 (43)
        • ►  Nov 27 (22)
        • ►  Nov 26 (27)
        • ►  Nov 25 (39)
        • ►  Nov 24 (27)
        • ►  Nov 23 (37)
        • ►  Nov 22 (21)
        • ►  Nov 21 (32)
        • ►  Nov 20 (20)
        • ►  Nov 19 (31)
        • ►  Nov 18 (34)
        • ►  Nov 17 (29)
        • ►  Nov 16 (21)
        • ►  Nov 15 (33)
        • ►  Nov 14 (16)
        • ►  Nov 13 (3)
        • ►  Nov 12 (3)
        • ►  Nov 11 (1)
        • ►  Nov 09 (2)
        • ►  Nov 07 (14)
        • ►  Nov 04 (16)
        • ►  Nov 03 (17)
        • ►  Nov 02 (23)
        • ►  Nov 01 (15)
      • ►  October (374)
        • ►  Oct 31 (15)
        • ►  Oct 30 (2)
        • ►  Oct 29 (4)
        • ►  Oct 28 (25)
        • ►  Oct 27 (19)
        • ►  Oct 26 (16)
        • ►  Oct 25 (11)
        • ►  Oct 24 (14)
        • ►  Oct 23 (12)
        • ►  Oct 21 (14)
        • ►  Oct 20 (19)
        • ►  Oct 19 (21)
        • ►  Oct 18 (17)
        • ►  Oct 17 (15)
        • ►  Oct 16 (20)
        • ►  Oct 15 (12)
        • ►  Oct 14 (11)
        • ►  Oct 13 (21)
        • ►  Oct 12 (13)
        • ►  Oct 11 (6)
        • ►  Oct 10 (12)
        • ►  Oct 09 (17)
        • ►  Oct 08 (10)
        • ►  Oct 07 (11)
        • ►  Oct 06 (19)
        • ►  Oct 05 (13)
        • ►  Oct 03 (5)
      • ►  September (406)
        • ►  Sept 29 (6)
        • ►  Sept 28 (2)
        • ►  Sept 27 (12)
        • ►  Sept 16 (20)
        • ►  Sept 15 (34)
        • ►  Sept 14 (39)
        • ►  Sept 13 (32)
        • ►  Sept 12 (36)
        • ►  Sept 11 (18)
        • ►  Sept 10 (16)
        • ►  Sept 07 (6)
        • ►  Sept 06 (26)
        • ►  Sept 05 (14)
        • ►  Sept 04 (44)
        • ►  Sept 03 (17)
        • ►  Sept 02 (38)
        • ►  Sept 01 (46)
      • ►  August (777)
        • ►  Aug 31 (13)
        • ►  Aug 29 (22)
        • ►  Aug 28 (13)
        • ►  Aug 27 (26)
        • ►  Aug 26 (18)
        • ►  Aug 25 (14)
        • ►  Aug 24 (13)
        • ►  Aug 23 (22)
        • ►  Aug 22 (23)
        • ►  Aug 21 (20)
        • ►  Aug 20 (23)
        • ►  Aug 19 (13)
        • ►  Aug 18 (31)
        • ►  Aug 17 (36)
        • ►  Aug 16 (17)
        • ►  Aug 15 (33)
        • ►  Aug 14 (24)
        • ►  Aug 13 (28)
        • ►  Aug 12 (28)
        • ►  Aug 11 (28)
        • ►  Aug 10 (59)
        • ►  Aug 09 (33)
        • ►  Aug 08 (39)
        • ►  Aug 07 (23)
        • ►  Aug 06 (36)
        • ►  Aug 05 (23)
        • ►  Aug 04 (25)
        • ►  Aug 03 (17)
        • ►  Aug 02 (26)
        • ►  Aug 01 (51)
      • ►  July (890)
        • ►  Jul 31 (27)
        • ►  Jul 30 (31)
        • ►  Jul 29 (29)
        • ►  Jul 28 (40)
        • ►  Jul 27 (32)
        • ►  Jul 26 (16)
        • ►  Jul 25 (5)
        • ►  Jul 24 (45)
        • ►  Jul 23 (16)
        • ►  Jul 22 (42)
        • ►  Jul 21 (11)
        • ►  Jul 20 (41)
        • ►  Jul 19 (31)
        • ►  Jul 18 (35)
        • ►  Jul 17 (41)
        • ►  Jul 16 (21)
        • ►  Jul 15 (23)
        • ►  Jul 14 (38)
        • ►  Jul 13 (49)
        • ►  Jul 12 (42)
        • ►  Jul 11 (25)
        • ►  Jul 10 (48)
        • ►  Jul 09 (33)
        • ►  Jul 08 (38)
        • ►  Jul 07 (19)
        • ►  Jul 06 (10)
        • ►  Jul 05 (14)
        • ►  Jul 04 (13)
        • ►  Jul 03 (20)
        • ►  Jul 02 (26)
        • ►  Jul 01 (29)
      • ▼  June (1003)
        • ▼  Jun 30 (29)
          • Real-Life Holodeck? 'Star Trek' Tech Uses VR to So...
          • Breast Cancer Gene' BRCA1 Linked to Aggressive Ute...
          • Neural circuits underlying mother’s voice percepti...
          • Utilization of fruit peels as carbon source for wh...
          • High density biomass estimation for wetland vegeta...
          • Stratified aboveground forest biomass estimation b...
          • Strong memory of strain-induced copolymer crystall...
          • Relation of impact strength to the microstructure ...
          • FRET-based acrylic nanoparticles with dual-color p...
          • Donut-like hybrid latex comprising discrete thermo...
          • STARCH BINDER COMPOSITION
          • MODIFIED STARCH COMPOSITIONS
          • Effects of shading after pollination on kernel fil...
          • Genetic diversity for grain Zn concentration in fi...
          • Conditional QTL mapping of three yield components ...
          • Facile conversion of nitrile to amide on polymers ...
          • Hierarchical porous structures in cellulose: NMR r...
          • Length scale dependence in elastomers – comparison...
          • UNDERUTILIZED CROP
          • SHARECROPPING
          • PERMANENT CROP
          • NURSE CROP
          • FERTILE CRESCENT
          • NEOLITHIC FOUNDER CROPS
          • MULTIPLE CROPPING
          • INTERCROPPING
          • INDUSTRIAL CROP
          • FIBER CROP
          • Working Together? Male and Female Brains Just Aren...
        • ►  Jun 29 (43)
        • ►  Jun 28 (27)
        • ►  Jun 27 (33)
        • ►  Jun 26 (49)
        • ►  Jun 25 (30)
        • ►  Jun 24 (32)
        • ►  Jun 23 (42)
        • ►  Jun 22 (38)
        • ►  Jun 21 (20)
        • ►  Jun 20 (30)
        • ►  Jun 19 (37)
        • ►  Jun 18 (15)
        • ►  Jun 17 (12)
        • ►  Jun 16 (52)
        • ►  Jun 15 (59)
        • ►  Jun 14 (49)
        • ►  Jun 13 (38)
        • ►  Jun 12 (39)
        • ►  Jun 11 (44)
        • ►  Jun 10 (22)
        • ►  Jun 09 (34)
        • ►  Jun 08 (39)
        • ►  Jun 07 (28)
        • ►  Jun 06 (38)
        • ►  Jun 05 (19)
        • ►  Jun 04 (20)
        • ►  Jun 03 (27)
        • ►  Jun 02 (27)
        • ►  Jun 01 (31)
      • ►  May (648)
        • ►  May 31 (32)
        • ►  May 30 (48)
        • ►  May 29 (46)
        • ►  May 28 (43)
        • ►  May 27 (19)
        • ►  May 26 (37)
        • ►  May 25 (29)
        • ►  May 24 (22)
        • ►  May 23 (23)
        • ►  May 22 (18)
        • ►  May 21 (18)
        • ►  May 20 (22)
        • ►  May 19 (28)
        • ►  May 18 (12)
        • ►  May 17 (24)
        • ►  May 16 (9)
        • ►  May 15 (18)
        • ►  May 14 (13)
        • ►  May 13 (16)
        • ►  May 12 (6)
        • ►  May 11 (15)
        • ►  May 10 (15)
        • ►  May 09 (25)
        • ►  May 08 (14)
        • ►  May 07 (15)
        • ►  May 06 (10)
        • ►  May 04 (21)
        • ►  May 03 (22)
        • ►  May 02 (9)
        • ►  May 01 (19)
      • ►  April (490)
        • ►  Apr 30 (7)
        • ►  Apr 29 (21)
        • ►  Apr 28 (19)
        • ►  Apr 27 (15)
        • ►  Apr 26 (12)
        • ►  Apr 25 (19)
        • ►  Apr 24 (13)
        • ►  Apr 23 (24)
        • ►  Apr 22 (24)
        • ►  Apr 21 (22)
        • ►  Apr 20 (19)
        • ►  Apr 19 (46)
        • ►  Apr 18 (24)
        • ►  Apr 17 (15)
        • ►  Apr 16 (19)
        • ►  Apr 15 (8)
        • ►  Apr 14 (19)
        • ►  Apr 13 (22)
        • ►  Apr 12 (18)
        • ►  Apr 11 (11)
        • ►  Apr 10 (13)
        • ►  Apr 09 (12)
        • ►  Apr 08 (12)
        • ►  Apr 07 (15)
        • ►  Apr 06 (16)
        • ►  Apr 05 (10)
        • ►  Apr 04 (8)
        • ►  Apr 03 (15)
        • ►  Apr 01 (12)
      • ►  March (445)
        • ►  Mar 31 (7)
        • ►  Mar 30 (10)
        • ►  Mar 29 (17)
        • ►  Mar 28 (15)
        • ►  Mar 27 (8)
        • ►  Mar 26 (11)
        • ►  Mar 25 (10)
        • ►  Mar 24 (9)
        • ►  Mar 23 (13)
        • ►  Mar 22 (9)
        • ►  Mar 21 (13)
        • ►  Mar 20 (9)
        • ►  Mar 19 (15)
        • ►  Mar 18 (14)
        • ►  Mar 17 (11)
        • ►  Mar 16 (15)
        • ►  Mar 15 (23)
        • ►  Mar 14 (26)
        • ►  Mar 13 (20)
        • ►  Mar 12 (14)
        • ►  Mar 11 (18)
        • ►  Mar 10 (27)
        • ►  Mar 09 (18)
        • ►  Mar 08 (25)
        • ►  Mar 07 (11)
        • ►  Mar 06 (15)
        • ►  Mar 05 (18)
        • ►  Mar 04 (9)
        • ►  Mar 03 (14)
        • ►  Mar 02 (7)
        • ►  Mar 01 (14)
      • ►  February (258)
        • ►  Feb 29 (22)
        • ►  Feb 28 (14)
        • ►  Feb 27 (12)
        • ►  Feb 26 (4)
        • ►  Feb 25 (17)
        • ►  Feb 24 (16)
        • ►  Feb 23 (16)
        • ►  Feb 22 (8)
        • ►  Feb 21 (23)
        • ►  Feb 20 (6)
        • ►  Feb 19 (5)
        • ►  Feb 18 (3)
        • ►  Feb 17 (9)
        • ►  Feb 16 (17)
        • ►  Feb 15 (20)
        • ►  Feb 14 (10)
        • ►  Feb 13 (17)
        • ►  Feb 11 (3)
        • ►  Feb 10 (1)
        • ►  Feb 08 (2)
        • ►  Feb 07 (5)
        • ►  Feb 05 (2)
        • ►  Feb 04 (10)
        • ►  Feb 03 (7)
        • ►  Feb 02 (1)
        • ►  Feb 01 (8)
      • ►  January (8)
        • ►  Jan 30 (4)
        • ►  Jan 10 (4)
    • ►  2013 (23)
      • ►  February (18)
        • ►  Feb 07 (1)
        • ►  Feb 06 (2)
        • ►  Feb 05 (8)
        • ►  Feb 04 (5)
        • ►  Feb 02 (1)
        • ►  Feb 01 (1)
      • ►  January (5)
        • ►  Jan 31 (4)
        • ►  Jan 30 (1)

    Report Abuse

    Follower

    Translate

    Total Pageviews

    nuffnang ads

    Nuffnang Ads

    nuffnang ads

    Nuffnang Ads

    Picture Window theme. Theme images by sndrk. Powered by Blogger.