Everything About Wood

Find the information such as human life, natural resource,agriculture,forestry, biotechnology, biodiversity, wood and non-wood materials.

Blog List

Tuesday, 5 July 2016

Deciphering Starch Quality of Rice Kernels Using Metabolite Profiling and Pedigree Network Analysis

Published Date
March 2012, Vol.5(2):442–451, doi:10.1093/mp/ssr101
Open Archive, Elsevier user license
RESEARCH ARTICLES

Deciphering Starch Quality of Rice Kernels Using Metabolite Profiling and Pedigree Network Analysis

  • Miyako Kusano a,b,,
  • Atsushi Fukushima a
  • Naoko Fujita c
  • Yozo Okazaki a
  • Makoto Kobayashia
  • Naoko Fujita Oitome c
  • Kaworu Ebana d
  • Kazuki Saito a,e
  • aRIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
  • bKIHARA Institute for Biological Research, Yokohama City University, Totsuka, Yokohama 244-0813, Japan
  • cDepartment of Biological Production, Akita Prefectural University, Akita 010-0195, Japan
  • dNational Institute of Agrobiological Sciences, 2–1–2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
  • eGraduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan

  • ABSTRACT
  • The physiological properties of rice grains are immediately obvious to consumers. High-coverage metabolomic characterization of the rice diversity research set predicted a negative correlation between fatty acid and lipid levels and amylose/total starch ratio (amylose ratio), but the reason for this is unclear. To obtain new insight into the relationships among the visual phenotypes of rice kernels, starch granule structures, amylose ratios, and metabolite changes, we investigated the metabolite changes of five Japonica cultivars with various amylose ratios and two knockout mutants (e1, a Starch synthase IIIa (SSIIIa)-deficient mutant and the SSIIIa/starch branching enzyme (BE) double-knockout mutant 4019) by using mass spectrometry-based metabolomics techniques. Scanning electron microscopy clearly showed that the two mutants had unusual starch granule structures. The metabolomic compositions of two cultivars with high amylose ratios (Hoshiyutaka and Yumetoiro) exhibited similar patterns, while that of the double-knockout mutant, which has an extremely high amylose ratio, differed. Rice pedigree network analysis of the cultivars and the mutants provided insight into the association between metabolic-trait properties and their underlying genetic basis in rice breeding in Japan. Multidimensional scaling analysis revealed that the Hoshiyutaka and Yumetoiro cultivars were Indica-like, yet they are classified as Japonica subpopulations. Exploring metabolomic traits is a powerful way to follow rice genetic traces and breeding history.

  • Key words
  • starch quality
  • traits
  • amylose ratio
  • metabolite profiling
  • pedigree networks
  • rice

INTRODUCTION

Rice is an important cereal of the human diet because it is a good source of carbohydrates. Improvement in starch quality in rice grains is directly connected to rice-grain eating and cooking quality because 80–90% of the dry matter of rice grains is composed of starch (Duan and Sun, 2005). Starch granules in both rice and other cereals and crops consist of amylose and amylopectin. Starch quality is affected by many factors, including growth conditions and variety/cultivar differences. Of these, the amylose/total starch ratio (amylose ratio) is one of the most important factors for predicting the physicochemical properties of starches (Blaszczak et al., 2003).
Rice grains contain lipids and free fatty acids (Prabhakar and Venkatesh, 1986; Proctor and Lam, 2001). These compounds have an important effect on starch physicochemical properties (Perez and Bertoft, 2010). Lysophosphatidylcholines (LPCs) are the main phospholipids in cereal starches as well as in rice kernels (Choudhury and Juliano, 1980), and LPC content is an important factor in the determination of starch quality (Blaszczak et al., 2003; Hernández-Hernández et al., 2011).
Metabolomics can give a snapshot of biochemical status in cells, body fluids, tissues, and organs in organisms (Fukushima et al., 2009; Albinsky et al., 2010; Kusano et al., 2011). Metabolomics has provided great contributions to both phenotyping and diagnostic analyses of plants (Nunes-Nesi et al., 2010). Gas chromatography–mass spectrometry was applied for the detection of primary metabolites such as fatty acids, sugars, amino acids, and organic acids in metabolomics (Saito and Matsuda, 2010; Kusano et al., 2011). Lipidomic analysis including phospholipids was performed using liquid chromatography–mass spectrometry (LC–MS) (Welti et al., 2007; Murphy and Gaskell, 2011; Okazaki et al., 2011). An association analysis among metabolite composition, genotype, and phenotype revealed a close link between biomass and a specific combination of metabolites including starch in recombinant inbred lines (Meyer et al., 2007) and accessions in Arabidopsis (Sulpice et al., 2009). Trait–metabolite association analysis using the rice diversity research set (RDRS) predicted that amylose ratio and fatty acids and other metabolites such as glycerol, phosphate, and putrescine are negatively correlated among rice cultivars, while the two mutants, e1, a Starch synthase IIIa (SSIIIa)-deficient mutant (amylose ratio, approximately 30%; Nipponbare background (Fujita et al., 2007)), and the SSIIIa/starch branching enzyme (BE) double-knockout mutant 4019 (amylose ratio, approximately 36%; Nipponbare/Kinmaze background), did not show the same trend (Redestig et al., 2011). However, it is unclear why there was an association between amylose ratio and the metabolites in rice kernels of the cultivars but not in the mutants.
To obtain new insight about the relationships among visual phenotypes including rice kernels, starch structure, amylose ratio, and metabolite changes including phospholipids, we investigated the metabolite changes of Japonica cultivars with various amylose ratios and two knockout mutants (Fujita et al., 2007) by combing metabolite profile data obtained from gas chromatography–time-of-flight–mass spectrometry (GC–MS) and from LC–ion-trap–time-of-flight–MS (IT–MS) analyses. We also conducted rice pedigree network analysis of the cultivars and the mutants to estimate the extent of the association between metabolite-trait properties and their underlying genetic basis in rice breeding in Japan.

RESULTS

Visual Phenotypes and Morphological Traits of the Rice Seeds and Kernels

We observed the visual phenotypes of the rice seeds and kernels of the five cultivars (Nipponbare, Kinmaze, Soft158, Yumetoiro, and Hoshiyutaka) and the two knockout mutants (e1 and 4019). Cultivar Yumetoiro and Hoshiyutaka are known to have high amylose ratios, while Soft158 has a low amylose ratio (Sakai et al., 1989; Ohta et al., 2004; Redestig et al., 2011). Rice seeds and kernels of the two high-amylose cultivars showed long-grain phenotypes (Figure 1D and 1E, and Table 1). The rice seeds of other cultivars and the mutants looked similar (Figure 1). However, the kernels of the e1 mutant had white cores (Fujita et al., 2007) while the 4019 kernels looked almost completely opaque (Figure 1F and 1G). The weight of 100 kernels of the high-amylose cultivars and 4019 was low compared to that of Nipponbare (Table 1).
Figure 1. Visual Phenotypes of Rice Seeds and Brown Rice of the Five Cultivars and the Two Knockout Mutants.
(A) Nipponbare, (B) Kinmaze, (C) Soft158, (D) Yumetoiro, (E) Hoshiyutaka, (F) e1, and (G) 4019.
Scale bar (white) = 5 mm.
Table 1. Variation of Rice Grain Morphological Traits.
CultivarNipponbareKinmazeSoft158YumetoiroHoshiyutakae14019
Seed length (mm)7.4 ± 0.117.3 ± 0.076.9* ± 0.128.3** ± 0.158.3*** ± 0.087.5 ± 0.167.7 ± 0.24
Seed width (mm)3.4 ± 0.213.4 ± 0.023.3 ± 0.042.9** ± 0.042.7** ± 0.023.4 ± 0.043.4 ± 0.05
Seed size (mm2)a24.7 ± 1.3924.4 ± 0.3722.6* ± 0.6523.8 ± 0.7722.7* ± 0.2125.6 ± 0.8326.1 ± 1.10
The weight of 100 seeds (mg)2405.9 ± 91.392201.4 ± 111.452366.0 ± 27.952315.2 ± 77.972072.4*** ± 32.852529.5 ± 64.542187.2*± 73.43
Kernel length (mm)5.2 ± 0.065.0** ± 0.055.0* ± 0.085.8* ± 0.156.0*** ± 0.075.4* ± 0.045.1* ± 0.09
Kernel width (mm)2.9 ± 0.102.8 ± 0.062.8 ± 0.052.5*** ± 0.042.4*** ± 0.032.9 ± 0.012.8 ± 0.01
Kernel size (mm2)a14.7 ± 1.0015.5 ± 0.0914.4 ± 0.5914.5 ± 0.0614.6 ± 0.2314.0 ± 0.4514.0 ± 0.24
The weight of 100 kernels (mg)2000.4 ± 81.421850.3 ± 97.891916.9 ± 19.261831.9* ± 56.661694.9*** ± 32.772060.6 ± 40.441725.6**± 48.81
Values are presented as the mean ± standard deviation (SD). Ten grains of each biological replicate were used (number of biological replicates, n = 3).
Differences between Nipponbare and each cultivar or mutant analyzed using Welch's t-test were statistically significant.
  • *
    p < 0.05;
  • **
    p < 0.005;
  • ***
    p < 0.0005
  • a
    Size was tentatively calculated by multiplying length and width of each seed or kernel.

Starch Granule Structures of the Cultivars and the Knockout Mutants

To obtain insight about the relationships between amylose ratio and starch granule structure, we conducted starch granule imaging using scanning electron microscopy (SEM) (Figure 2). SEM images of the starch granule structures of the cultivars looked similar (Figure 2A–2E), while that of e1 showed relatively small starch granules, some of which were round (Figure 2F and 2H). Kernels of the amylose-hyperaccumulating mutant 4019 had uniquely shaped starch granules, namely large and spherical or wormlike (Figure 2G and 2I). The SEM imaging results suggested that there is probably no correlation between amylose ratio and starch granule structure, at least among the assayed cultivars.
Figure 2. Scanning Electron Microscopy (SEM) of the Starch Granules.
SEM images are magnified 1000× for starch granules of (A) Nipponbare, (B) Kinmaze, (C)Soft158, (D) Yumetoiro, (E) Hoshiyutaka, (F) e1, and (G) 4019. SEM images are magnified 4000× for (H) e1 and (I) 4019.
Scale bar (white) = 10 μm at a magnification of 1000× and 5 μm at a magnification of 4000×.
We further investigated how many starch granules are packed in rice kernels of e1, 4019, and Nipponbare by using SEM (Figure 3). The result of the cross-sections of endosperm of e1 and 4019 clearly showed that the starch granules of the mutants were loosely packed in rice kernels.
Figure 3. Cross-Sections of Endosperm in Rice Kernels.
SEM images are magnified 3000× for (A) and (C) Nipponbare, (B) e1, and (D) 4019. The mutant kernels of e1 and those of Nipponbare were harvested on 2005, while 4019 and the corresponding Nipponbare were on 2008.
Scale bar (white) = 5 μm at a magnification of 4000×.

Metabolite Profiling of the Cultivars and the Knockout Mutants by Using GC–MS and IT–MS

We next performed metabolite profiling to investigate the extent of the metabolite changes in kernels of the cultivars and the knockout mutants by using GC–MS and IT–MS (Supplemental Data 1 and 2). Differentially changed metabolites compared to the control Nipponbare were visualized using a heatmap generated using hierarchical cluster analysis (HCA) (Figure 4). The metabolite changes found in the metabolite profiles of the double-knockout mutant 4019 showed a unique pattern (class III in Figure 4). On the other hand, the single knockout mutant e1 was grouped into class I. Two high-amylose cultivars (Hoshiyutaka and Yumetoiro) had similar patterns according to changes in their metabolite profiles (class II in Figure 4). Subsequently, we assessed the extent of metabolite-level changes of the cultivars and the mutants at the chosen statistical threshold (5% false discovery rate and log2-fold change > |1|). A Venn diagram was used to find the significantly changed metabolites in common or those that differed in Hoshiyutaka and Yumetoiro (Figure 5 and Table 2). Metabolites that were differentially changed in e1 and 4019 were compared to investigate how much the lack of SSIIIa affects metabolic alternations in rice kernels (Figure 5 and Table 2). In Hoshiyutaka and Yumetoiro, levels of eight of the metabolites were commonly decreased (Figure 5 and Table 2). The level of 18:0-LPC was increased in the amylose-rich cultivars (Table 2). Between e1 and 4019, the levels of many metabolites were commonly increased such as fructose-6-phosphate, fructose, glucose, 18:0-LPC, and intermediates in the TCA cycle (Figure 5 and Table 2), while the phytol level was significantly decreased (Table 2). Approximately 50% of the metabolites were commonly changed in e1 and 4019 (Figure 5).
Figure 4. Heatmap with Cluster Dendrogram of the Differentially Changed Metabolites by Hierarchical Cluster Analysis (HCA).
Annotated or identified metabolites using gas chromatography–mass spectrometry (GC–MS) (99 metabolites) and ion trap–mass spectrometry (IT–MS) (10 metabolites) appear in the rows and the samples appear in the columns. HCA was performed using the matrix (log2-fold change; cultivars or mutants versus control NB). The complete list of differentially changed metabolites is available in Supplemental Data 1 and 2. Abbreviations: HCA, hierarchical cluster analysis; NB, Nipponbare; Kin, Kinmaze; Hoshi, Hoshiyutaka; Yume, Yumetoiro.
Figure 5. Venn Diagram of Significantly Changed Metabolites in Common or Those that Differ in (A) Hoshiyutaka and Yumetoiro and (B) e1 and 4019.
The Venn diagram in (A) shows the number of commonly decreased metabolites in Hoshiyutaka and Yumetoiro compared to Nipponbare (NB), while the Venn diagram in (B) represents the number of commonly increased metabolites in e1 and 4019.
Significant levels were set at false discovery rate (FDR) < 0.05 discovery rate and log2-fold change (FC) > |1|. See also Table 2 for more detail.
Table 2. Common Changed Metabolites between Hoshiyutaka and Yumetoiro and Between e1and 4019.
(A) Common changed metabolites between Hoshiyutaka and Yumetoiro.
Metabolite changesMetabolite namelog2-FC in Hoshi/NBFDRlog2-FC in Yume/NBFDR
Increased18:0-lysoPC1.00.000.70.00
DecreasedSerine−1.50.00−3.20.00
Alanine, beta-−1.70.00−3.30.00
Aspartic acid−1.10.00−1.10.00
Propane, 1,3-diamino-−1.40.00−1.50.00
Glutamine−2.20.00−4.70.00
Fructose−1.40.00−1.60.00
M000000_A217004–101_MST_2174.6_EITTMS_−2.10.00−2.90.00
Pyroglutamate−1.50.00−3.10.00
(B) Common changed metabolites between e1 and 4019
Metabolite changesMetabolite namelog2-FC in e1/NBFDRlog2-FC in 4019/NBFDR
IncreasedHomoserine1.30.001.40.00
Aspartic acid2.00.003.80.00
Arabinose2.20.003.10.00
Shikimic acid1.70.003.30.00
Fructose2.60.002.50.00
N-Acetyl-d-glucosamine1.10.001.10.00
M000000_A217004–101_MST_2174.6_EITTMS_2.00.002.50.00
Fructose-6-phosphate4.80.009.90.00
M000000_A237002–101_MST_2370.2_EITTMS_1.30.002.00.00
M000000_A250001–101_MST_2495.5_EITTMS_2.00.001.60.00
PR_MST_Polyol (Hexitol)_2539.53.20.004.20.00
Glucose2.00.002.60.00
Glycerol2.70.004.10.00
Citrate1.20.002.70.00
Isocitrate1.20.002.40.00
18:0-lysoPC1.30.002.40.00
DecreasedPhytol−1.60.00−3.60.00
Significant levels were set at FDR < 0.05 discovery rate and log2-fold change (FC) > |1|. FC, fold change; FDR, false discovery rate; NB, Nipponbare; Kin, Kinmaze; Hoshi, Hoshiyutaka; Yume, Yumetoiro.
We investigated changes in the metabolite levels of fatty acids, phosphatidylcholines (PCs), and LPCs to validate our prediction of amylose ratio and fatty acid and lipid levels in our previous study (Supplemental Tables 1 and 3). The linoleate level was negatively correlated to amylose ratio among the traditional cultivars (Redestig et al., 2011). However, there are no correlation relationships among other fatty acids, PCs, LPCs, and amylose ratios in the assayed cultivars. The levels of three fatty acids (linoleate, oleate, and palmitate), two LPCs (16:0-lysoPC and 18:0-lysoPC), and six PCs were significantly increased in rice kernels of 4019 (Supplemental Table 3).

Rice Pedigree Network Analysis Reflected the Origin of the Metabolite Profile Patterns of the Cultivars

Metabolite profiling analysis clearly showed that the metabolite profiles of e1, Kinmaze, and Soft158 have similar patterns, while those of Hoshiyutaka and Yumetoiro are similar (Figure 4). We investigated the network of rice breeding history for the five cultivars using a rice characteristic database (Ohta et al., 2004) and the Plant Genetic Resources Search System in the NIASGBdb to obtain insight into the origins of metabolite profile alternations throughout rice relations in Japan (see ‘Methods’) (Takeya et al., 2011). A total of 171 cultivars were involved in the breeding history of generating the cultivars and the mutants (Figure 6). Hoshiyutaka and Yumetoiro are progenies of common Indica cultivars such as IR8, Peta, and Taichungnative1 (TN1).
Figure 6. Rice Pedigree Network Analysis Based on Information of Rice Relationships in Japan.
Each node represents a cultivar. The orange node shows the cultivars used for the study, while the blue node displays single (e1 and be) or double (4019) knockout mutants. The green nodes are the common ancestors of Hoshiyutaka and Yumetoiro. Two Indica cultivars, Mudgo and O. nivara, are shown as pink nodes. Edges represent pedigrees in rice breeding history. The green edge shows a parent–child relation (pcr), while the pink double line shows a pair relationship. The blue line and purple broken edges show mutations and selections, respectively. TN1, Taichungnative1.
Soft158 and Nipponbare were generated by the crossing of Japonica cultivars. Kinmaze is an old cultivar in Japan (Ohta et al., 2004) that exists in the middle of the pedigree network (Figure 6).
The double-knockout 4019 was generated by crossing e1 in the Nipponbare background with be, which is lacking a BE, in the Kinmaze background (Figure 6), although metabotype of the mutant 4019 was very specific (Figure 5).

Indica–Japonica Differentiation by Metabotypes of Kinmaze, Soft158, Hoshiyutaka, and Yumetoiro, and those of the Cultivars in RDRS

Rice pedigree network analysis suggested that the specific metabolite changes found in Hoshiyutaka and Yumetoiro may reflect an Indica-like metabotype. To estimate the relationships between metabotype changes and the differences of the Indica or Japonica type in O. sativa, we conducted multidimensional scaling (MDS) using a metabolite profile dataset consisting of the normalized metabolite profiles of Kinmaze, Soft158, Hoshiyutaka, and Yumetoiro and those of the Indica and Japonica cultivars (non-glutinous rice) that were randomly chosen from the RDRS (see ‘Methods’). The coordinate plot of the MDS analysis demonstrated that the metabotypes of Hoshiyutaka and Yumetoiro were closer to those of the Indica cultivars, although both were classified as Japonica cultivars (Figure 7). Furthermore, the metabotype of Hoshiyutaka was located in the center of the plot.
Figure 7. The Coordinate Plot of Multidimensional Scaling (MDS) Analysis Using Normalized Metabolite Profiles of Four Cultivars and the Eight Representative Cultivars Chosen from the Rice Diversity Research Set (RDRS).
Euclidean distance and log2 ratio values compared to the metabolite profiles of Nipponbare were used (see ‘Methods’). I, Indica; J, Japonica.

DISCUSSION

Fatty Acids and LPCs Probably Pack Starch Granules in Rice Kernels

We expected that a negative correlation relationship between fatty acid/lipid levels and amylose ratio suggested by our prediction in our earlier study are probably required to maintain normal starch granules in rice kernels (Redestig et al., 2011). To verify this hypothesis, we observed the starch granule structures of the cultivars and the mutants by using SEM. As in our hypothesis, the starch granules of e1 and 4019, which show no significant correlation between fatty acid/lipid levels and amylose ratio, had unique structures (Figure 2). In particular, the shapes of the starch granules in 4019 were similar to those in high-amylose maize (Perez and Bertoft, 2010). Observations of the cross-sections of endosperm in these mutant kernels revealed that starch granules were loosely packed in both mutants (Figure 3).
Cereal starches contain free fatty acids and LPCs, and these compounds are associated with the amylose fraction (Morrison et al., 1984). Amylose and the longest linear branches of amylopectin develop inclusion complexes with fatty acids, monoglycerides, and LPCs (Toro-Vazquez et al., 2003). Addition of exogenous LPCs to maize starch paste can enhance its thermal stability, resulting in more stable starch quality against heat because of starch–LPC inclusion complex formation (Toro-Vazquez et al., 2003; Hernández-Hernández et al., 2011). The fold changes in the levels of oleate, palmitate, 16:0-LPC, and 18:0-LPC in e1 and 4019 were higher than those in the amylose-rich cultivars (Supplemental Table 3), while the levels of linoleate and palmitate showed a negative correlation with amylose ratio across the representative non-glutinous cultivars except for the mutants (Redestig et al., 2011). These results suggest that SSIIIa and BE are not only essential for maintenance of starch granule structure, but also affect the metabolite composition of rice kernels. We must emphasize that simple starch analyses cannot provide us with such detailed insights about an importance of starch biosynthesis-related genes for rice kernels.
The appearance of rice kernels of the knockout mutants e1 and 4019 showed white cores and opacity, respectively (Figure 1F and 1G). Temperature is an important factor in the determination of rice grain quality, particularly during the grain-filling stage. When rice plants are grown at high temperature during this stage, the rice kernels have a chalky appearance and reduced weight (Tashiro and Wardlaw, 1991; Yamakawa et al., 2007). The endosperm of the chalky rice kernel ripened under high-temperature conditions were loosely packed with elliptical-shaped starch granules containing air spaces (Yamakawa et al., 2007). Furthermore, the levels of many genes and metabolites involved in starch biosynthesis and carbohydrate metabolism changed in the developing endosperm (Yamakawa and Hakata, 2010). Of these, SSIIIa is mainly expressed in developing rice endosperm (Hirose and Terao, 2004; Dian et al., 2005; Ohdan et al., 2005), and induction of SSIIIa in rice depends on temperature (Yamakawa et al., 2007; Yamakawa and Hakata, 2010). Kernels of the near-isogenic line CSSL50-1, which was derived from the original donor IR24 (Indica) in the largely Asominori background (Japonica), showed a chalky appearance and loosely packed endosperm granules with air spaces. Transcript profiling of the near isogenic line revealed differential changes in the expression levels of genes involving carbohydrate metabolism, signal transduction, and redox homeostasis compared to those in the control Asomonori (Liu et al., 2010). As the formation of grain chalkiness is influenced by multiple factors including starch synthesis, starch granule structure, and arrangement triggered by external stresses or down-regulation of genes involved in starch biosynthesis, investigations into fatty acid and LPC levels in developing rice grains of the mutants and other mutants with chalky or opaque phenotype should be completed soon to obtain detailed insight into the underlying mechanisms of starch granule packing in rice kernels.

Metabolite Profiling Is a Powerful Tool to Distinguish Cultivars Precisely

In this study, we used the Japonica cultivars and the mutants with the Japonica background as their direct parental lines. The Indica and Japonica cultivars have distinctive morphological and agronomic traits as well as differences at the molecular level, such as DNA restriction fragment length polymorphism (Ebana et al., 2005; Zhang et al., 2009), simple sequence repeats, and chloroplast sequence (McCouch et al., 2005). Traits including potassium chlorate resistance, drought resistance, apiculus hair length, cold sensitivity, and phenol reaction have been used often for Indica–Japonica differentiation, although the spectra of the variation of these traits overlap in the cultivars (Morishima and Oka, 1981). Seed lengths of many Indica cultivars exceed those of Japonica cultivars. However, the probability of misclassification using this trait was approximately 40% (Morishima and Oka, 1981).
Umemoto and colleagues reported that Japonica-type amylopectin tends to contain short-unit chains with a degree of polymerization (DP) ≤ 11 and long-unit chains with DP ≥ 25, while Indica-type amylopectin has a tendency to consist of intermediate-size chains with 12 ≤ DP ≤ 24 and long-unit chains with DP ≥ 25 (Umemoto et al., 1999). As the levels of the long-unit chains are similar in the two amylopectins, the specific characteristics of amylopectins depend on the presence of the short-unit or intermediate-sized chains in rice grains (Umemoto et al., 1999; Nakamura et al., 2002and Nakamura et al., 2002). On the basis of the chain length in the amylopectin clusters, starches of rice cultivars cultivated in Asia can be classified into two types: L (for Indica) and S (for Japonica) (Nakamura et al., 2002a). The metabolite changes of the cultivars showed similar patterns (Figure 4). Visible phenotypes of Hoshiyutaka and Yumetoiro have longer seeds and kernels than others (Figure 1 and Table 1). However, both cultivars belonged to S-type rice according to their DP values. Soft158 (low-amylose rice) and Nipponbare (medium-amylose rice) were also classified as S-type rice (Horibata et al., 2004). Use of a metabotype-based classification strategy can give us insight into the underlying status of seed composition in rice (Figure 7). Hoshiyutaka and Yumetoiro are indeed hybrid rice of the Indica and Japonica cultivars. According to the rice pedigree networks, ancestors of Hoshiyutaka are almost all Japonica cultivars except for Indica cultivars Mudgo and IR8 (Figure 6). Investigation of the extent of metabolite changes using a collection of backcross-recombinant inbred lines between Indica and Japonica cultivars will be performed in a future study. In summary, our results suggest that phenotype–metabotype associations between Hoshiyutaka and Yumetoiro are well coordinated across rice breeding history in Japan. Large-scale metabotyping of 171 cultivars in Figure 6would provide evidence to follow the traces of the rice pedigrees as a future study.

METHODS

Chemicals

All chemicals except for the isotope-labeled chemicals used for the GC–MS analysis (Kusano et al., 2007) were purchased from Wako (Osaka, Japan; www.wako-chem.co.jp/egaiyo/) or Sigma-Aldrich (Tokyo, Japan; www.sigmaaldrich/japan.html).

Plant Materials

The five rice cultivars (Nipponbare, Kinmaze, Soft158, Hoshiyutaka, and Yumetoiro) and two knockout mutants (e1 and 4019) from RDRS were used for this study. Growth and harvesting were performed as previously described (Redestig et al., 2011).

Observation of Starch Granules Using SEM

Starch granules were prepared from polished rice by using the cold-alkali method (Yamamoto et al., 1973 and Yamamoto et al., 1981). Purified starch granules were coated with gold using a fine coater (JEOL JFC-1200) for 120 s. The morphology of the starch granules was examined by SEM (JEOL-5600, Tokyo, Japan). SEM was performed in secondary electron mode at 15 kV. For observation of cross-sections of endosperm, dried rice seeds were cut across the short axis with a razor blade. The surface was sputter coated with gold and observed using SEM.

Metabolite Profiling

Metabolite profiling using GC–MS and IT–MS was performed in accordance with the metabolomics metadata (Redestig et al., 2011). The data were log2 transformed for further analysis.

Statistical Data Analysis

Statistical analyses were performed using R v2.12.1 (www.r-project.org/) and Microsoft Office Excel 2007. Differences in the morphological traits of rice seeds and kernels between Nipponbare and each cultivar or mutant were determined using Welch’s t-test (p < 0.05). The fold changes of all cultivars and mutants were calculated by dividing by the mean value of Nipponbare. The differentially accumulated metabolites between a cultivar and Nipponbare and between a mutant and Nipponbare were detected using the LIMMA package (Smyth, 2004), which includes false discovery rate (FDR) correction for multiple testing (Benjamini and Hochberg, 1995). We identified metabolites with significant changes in metabolite levels (the log2-fold change > |1|) and the corresponding FDR-corrected p-values that were <0.05.
We used the log2-fold change matrix for HCA and MDS analysis. HCA was performed using Cluster 3.0 (de Hoon et al., 2004), and the results of HCA were visualized using Java TreeView v1.1.6 (http://jtreeview.sourceforge.net/). We applied Euclidean distance as similarity matrices for the metabolites and cultivars or mutants and the average linkage for clustering. Using Euclidean distance as implemented in the ‘cmdscale’ function of the R software, we performed MDS analysis, which tries to demonstrate the underlying structure of empirically acquired data. We also used the log2-fold change values for this analysis.

Rice Pedigree Network Analysis

Rice pedigree network analysis was performed using the following procedure. First, information about the rice pedigrees among Nipponbare, Kinmaze, Soft158, Hoshiyutaka, and Yumetoiro was collected from a rice characteristic database (http://ineweb.narcc.affrc.go.jp/) (Ohta et al., 2004) and NIASGBdb (www.gene.affrc.go.jp/databases-plant_search_en.php) (Takeya et al., 2011). The origins of e1 and 4019 were investigated on the basis of the literature (Fujita et al., 2007; Redestig et al., 2011). Second, we categorized the rice relationships into four categories: (1) parent–child relation (pcr); (2) pair relation (pair); (3) mutations induced by ethyl methanesulfonate mutation (EMS), by N-methyl-N-nitrosourea mutation (MNU), by endogenous retrotransposon Tos17 insertion (Tos17) (Agrawal et al., 2001), by γ-ray irradiation (gamma), and by natural mutation (mutation); and (4) natural selection (selection). The pedigree matrix was imported to Cytoscape 2.8.1 (www.cytoscape.org/), and then the rice pedigree network was visualized using a hierarchical layout algorithm. There were a total of 171 nodes and 317 edges in the network.

SUPPLEMENTARY DATA

Supplementary Data are available at Molecular Plant Online.

FUNDING

This work was partially supported by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (19380007 to N.F.) and the Program for the Promotion of Basic and Applied Research for Innovations in Bio-oriented Industry to N.F.

ACKNOWLEDGMENTS

We thank Koji Takano at the RIKEN Plant Science Center for his technical assistance with the IT–MS analysis and Hiroki Asai at Akita Prefectural University for his help with the starch preparation. No conflict of interest declared.

Supplementary Material

  • XLS (46K)
Supplementary Table S3
  • CSV (279K)
Supplementary Data
  • CSV (7K)
Supplementary Data

REFERENCES

    • Agrawal et al., 2001
    • GK Agrawal, M Yamazaki, M Kobayashi, R Hirochika, A Miyao, H Hirochika
    • Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion: tagging of a zeaxanthin epoxidase gene and a novel ostatc gene
    • Plant Physiol, Volume 125, 2001, pp. 1248–1257
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (106)
    • Albinsky, 2010
    • D Albinsky, et al.
    • Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism
    • Mol. Plant, Volume 3, 2010, pp. 125–142
    • Article
       | 
       PDF (3039 K)
       | 
      View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (32)
    • Benjamini and Hochberg, 1995
    • Y Benjamini, Y Hochberg
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Journal of the Royal Statistical Society, Volume B57, 1995, pp. 289–300
    • View Record in Scopus
      Citing articles (21)
    • Blaszczak et al., 2003
    • W Blaszczak, J Fornal, R Amarowicz, RB Pegg
    • Lipids of wheat, corn and potato starch
    • Journal of Food Lipids, Volume 10, 2003, pp. 301–312
    • View Record in Scopus
      Citing articles (7)
    • Choudhury and Juliano, 1980
    • NH Choudhury, BO Juliano
    • Effect of amylose content on the lipids of mature rice grain
    • Phytochemistry, Volume 19, 1980, pp. 1385–1389
    • Article
       | 
       PDF (433 K)
       | 
      View Record in Scopus
      Citing articles (26)
    • de Hoon et al., 2004
    • MJ de Hoon, S Imoto, J Nolan, S Miyano
    • Open source clustering software
    • Bioinformatics, Volume 20, 2004, pp. 1453–1454
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (1206)
    • Dian et al., 2005
    • W Dian, H Jiang, P Wu
    • Evolution and expression analysis of starch synthase III and IV in rice
    • J. Exp. Bot, Volume 56, 2005, pp. 623–632
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (62)
    • Duan and Sun, 2005
    • M Duan, SS Sun
    • Profiling the expression of genes controlling rice grain quality
    • Plant Mol. Biol., Volume 59, 2005, pp. 165–178
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (36)
    • Ebana et al., 2005
    • K Ebana, Y Kojima, S Fukuoka, T Nagamine, M Kawase
    • Development of an RFLP-based rice diversity research set of germplasm
    • Breeding Science, Volume 55, 2005, pp. 431–440
    • Fujita, 2007
    • N Fujita, et al.
    • Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm
    • Plant Physiol, Volume 144, 2007, pp. 2009–2023
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (106)
    • Fukushima et al., 2009
    • A Fukushima, M Kusano, H Redestig, M Arita, K Saito
    • Integrated omics approaches in plant systems biology
    • Curr. Opin. Chem. Biol., Volume 13, 2009, pp. 532–538
    • Article
       | 
       PDF (356 K)
       | 
      View Record in Scopus
      Citing articles (85)
    • Hernández-Hernández, 2011
    • E Hernández-Hernández, et al.
    • Synchrotron X-ray scattering analysis of the interaction between corn starch and an exogenous lipid during hydrothermal treatment
    • Journal of Cereal Science, Volume 54, 2011, pp. 69–75
    • Article
       | 
       PDF (573 K)
       | 
      View Record in Scopus
      Citing articles (5)
    • Hirose and Terao, 2004
    • T Hirose, T Terao
    • A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.)
    • Planta, Volume 220, 2004, pp. 9–16
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (112)
    • Horibata et al., 2004
    • T Horibata, M Nakamoto, H Fuwa, N Inouchi
    • Structure and physicochemical characteristics of endosperm starches of rice cultivars recently bred in Japan
    • J. Appl. Glycosc, Volume 51, 2004, pp. 303–313
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (31)
    • Kusano, 2007
    • M Kusano, et al.
    • Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana
    • BMC Syst. Biol, Volume 1, 2007, p. 53
    • Full Text via CrossRef
    • Kusano et al., 2011
    • M Kusano, A Fukushima, H Redestig, K Saito
    • Metabolomic approaches toward understanding nitrogen metabolism in plants
    • J. Exp. Bot, Volume 62, 2011, pp. 1439–1453
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (47)
    • Liu, 2010
    • X Liu, et al.
    • Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice
    • BMC Genomics, Volume 11, 2010, p. 730
    • Full Text via CrossRef
    • McCouch et al., 2005
    • S McCouch, AJ Garris, TH Tai, J Coburn, S Kresovich
    • Genetic structure and diversity in Oryza sativa L
    • Genetics, Volume 169, 2005, pp. 1631–1638
    • Meyer, 2007
    • RC Meyer, et al.
    • The metabolic signature related to high plant growth rate in Arabidopsis thaliana
    • Proc. Natl Acad. Sci. U S A, Volume 104, 2007, pp. 4759–4764
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (189)
    • Morishima and Oka, 1981
    • H Morishima, HI Oka
    • Phylogenetic differentiation of cultivated rice. 22. Numerical evaluation of the Indica-Japonica differentiation
    • Japanese Journal of Breeding, Volume 31, 1981, pp. 402–413
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (68)
    • Morrison et al., 1984
    • WR Morrison, TP Milligan, MN Azudin
    • A relationship between the amylose and lipid contents of starches from diploid cereals
    • Journal of Cereal Science, Volume 2, 1984, pp. 257–271
    • Article
       | 
       PDF (830 K)
       | 
      View Record in Scopus
      Citing articles (137)
    • Murphy and Gaskell, 2011
    • RC Murphy, SJ Gaskell
    • New applications of mass spectrometry in lipid analysis
    • J. Biol. Chem., Volume 286, 2011, pp. 25427–25433
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (29)
    • Nakamura et al., 2002
    • Y Nakamura, A Sakurai, Y Inaba, K Kimura, N Iwasawa, T Nagamine
    • The fine structure of amylopectin in endosperm from Asian cultivated rice can be largely classified into two classes
    • Starch-Starke, Volume 54, 2002, pp. 117–131
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (86)
    • Nakamura et al., 2002
    • Y Nakamura, T Umemoto, M Yano, H Satoh, A Shomura
    • Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties
    • Theoretical and Applied Genetics, Volume 104, 2002, pp. 1–8
    • Nunes-Nesi et al., 2010
    • A Nunes-Nesi, AR Fernie, M Stitt
    • Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions
    • Mol. Plant, Volume 3, 2010, pp. 973–996
    • Article
       | 
       PDF (1443 K)
       | 
      View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (145)
    • Ohdan, 2005
    • T Ohdan, et al.
    • Expression profiling of genes involved in starch synthesis in sink and source organs of rice
    • J. Exp. Bot, Volume 56, 2005, pp. 3229–3244
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (176)
    • Ohta et al., 2004
    • H Ohta, I Ando, T Imbe
    • Constraction of a rice characteristic database
    • Breed Res, Volume 6, 2004, p. 253
    • View Record in Scopus
      Citing articles (3)
    • Okazaki et al., 2011
    • Y Okazaki, Y Kamide, MY Hirai, K Saito
    • Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry
    • Metabolomics, 2011 in press
    • Perez and Bertoft, 2010
    • S Perez, E Bertoft
    • The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review
    • Starch-Starke, Volume 62, 2010, pp. 389–420
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (250)
    • Prabhakar and Venkatesh, 1986
    • JV Prabhakar, KVL Venkatesh
    • A simple chemical method for stabilization of rice bran
    • Journal of the American Oil Chemists Society, Volume 63, 1986, pp. 644–646
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (45)
    • Proctor and Lam, 2001
    • A Proctor, HS Lam
    • Rapid methods for milled rice surface total lipid and free fatty acid determination
    • Cereal Chemistry, Volume 78, 2001, pp. 498–499
    • Redestig, 2011
    • H Redestig, et al.
    • Exploring molecular backgrounds of quality traits in rice by predictive models based on high-coverage metabolomics
    • BMC Syst. Biol, Volume 5, 2011, p. 176
    • Full Text via CrossRef
    • Saito and Matsuda, 2010
    • K Saito, F Matsuda
    • Metabolomics for functional genomics, systems biology, and biotechnology
    • Annu. Rev. Plant Biol., Volume 61, 2010, pp. 463–489
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (226)
    • Sakai et al., 1989
    • M Sakai, H Shinoda, T Hoshino, M Okamoto
    • A high yielding Indica-Japonica-hybrid rice variety Hoshiyutaka
    • Jarq-Japan Agricultural Research Quarterly, Volume 23, 1989, pp. 81–85
    • Smyth, 2004
    • GK Smyth
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Statistical Applications in Genetics and Molecular Biology, Volume 3, 2004 Article 3
    • Sulpice, 2009
    • R Sulpice, et al.
    • Starch as a major integrator in the regulation of plant growth
    • Proc. Natl Acad. Sci. U S A, Volume 106, 2009, pp. 10348–10353
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (202)
    • Takeya, 2011
    • M Takeya, et al.
    • NIASGBdb: NIAS Genebank databases for genetic resources and plant disease information
    • Nucleic Acids Res, Volume 39, 2011, pp. D1108–D1113
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (10)
    • Tashiro and Wardlaw, 1991
    • T Tashiro, IF Wardlaw
    • The effect of high-temperature on kernel dimensions and the type and occurrence of kernel damage in rice
    • Australian Journal of Agricultural Research, Volume 42, 1991, pp. 485–496
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (90)
    • Toro-Vazquez et al., 2003
    • JF Toro-Vazquez, CA Gomez-Aldapa, A Aragon-Pina, E Brito-de la Fuente, E Dibildox-Alvarado, M Charo-Alonso
    • Interaction of granular maize starch with lysophosphatidylcholine evaluated by calorimetry, mechanical and microscopy analysis
    • Journal of Cereal Science, Volume 38, 2003, pp. 269–279
    • Article
       | 
       PDF (415 K)
       | 
      View Record in Scopus
      Citing articles (13)
    • Umemoto et al., 1999
    • T Umemoto, Y Nakamura, H Satoh, K Terashima
    • Differences in amylopectin structure between two rice varieties in relation to the effects of temperature during grain-filling
    • Starch-Starke, Volume 51, 1999, pp. 58–62
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (59)
    • Welti, 2007
    • R Welti, et al.
    • Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry
    • Frontiers in Bioscience, Volume 12, 2007, pp. 2494–2506
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (54)
    • Yamakawa and Hakata, 2010
    • H Yamakawa, M Hakata
    • Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation
    • Plant Cell Physiol, Volume 51, 2010, pp. 795–809
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (69)
    • Yamakawa et al., 2007
    • H Yamakawa, T Hirose, M Kuroda, T Yamaguchi
    • Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray
    • Plant Physiol, Volume 144, 2007, pp. 258–277
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (164)
    • Yamamoto et al., 1973
    • K Yamamoto, S Sawada, I Onogaki
    • Properties of rice starch prepared by alkali method with various condition
    • J. Jap. Soc. Starch Sci., Volume 20, 1973, pp. 99–104
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (50)
    • Yamamoto et al., 1981
    • K Yamamoto, S Sawada, I Onogaki
    • Effects of quality and quantity of alkali solution on the properties of rice starch
    • J. Jap. Soc. Starch Sci., Volume 28, 1981, pp. 241–244
    • View Record in Scopus
       | 
      Full Text via CrossRef
      Citing articles (22)
    • Zhang et al., 2009
    • QF Zhang, YD Ouyang, JJ Chen, JH Ding
    • Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice
    • Chinese Science Bulletin, Volume 54, 2009, pp. 2332–2341
  • Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
  • 1
    To whom correspondence should be addressed. tel. +81-45-503-9442, fax +81-45-503-9489


For further details log on website :
http://www.sciencedirect.com/science/article/pii/S1674205214601313
at July 05, 2016
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest

No comments:

Post a Comment

Newer Post Older Post Home
Subscribe to: Post Comments (Atom)

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...

  • Pengalaman bekerja sebagai kerani kilang.
    Assalamualaikum dan salam sejahtera chu olls.     Alhamdulillah sudah seminggu saya melalui pengalaman bermakna ini. Sebagai seorang pel...
  • MIDA- INDUSTRI BERASASKAN KAYU
    Industri berasaskan kayu di Malaysia terdiri daripada  Kayu bergergaji; Venir dan produk panel yang termasuk papan lapis dan produk ...
  • Advantages and Disadvantages of Fasting for Runners
    Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...
  • UKIRAN KAYU DALAM MASYARAKAT MELAYU
    Seni ukiran kayu di kalangan masyarakat Melayu bukan sahaja terdapat pada rumah-rumah tetapi penjelmaan dan penerapannya terdapat pada is...
  • Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia
    International Journal of Ecology Volume 2017 (2017), Article ID 3985631, 10 pages https://doi.org/10.1155/2017/3985631 Author Evgeny  ...
  • Diploma Teknologi Berasaskan Kayu
    LATARBELAKANG POLITEKNIK KOTA KINABALU Politeknik Kota Kinabalu merupakan politeknik yang ketujuh ditubuhkan oleh Kementerian Pendidikan...
  • DIPLOMA REKA BENTUK PERABUT
    Sijil Teknologi Diploma Rekabentuk Perabot Kod Kursus :  K18 ...
  • Motif, Corak dan Ragi Tenun Melayu Riau
    Author MELAYU Riau kaya dengan khazanah budayanya. Antaranya yang amat menonjol adalah motif ornamen Melayunya, yang banyak dipakai untuk ...
  • SISTEM PENGURUSAN HUTAN
    Polisi dan Strategi Untuk memastikan HSK diurus secara berkekalan, "Dasar dan Strategi Pengurusan Hutan untuk Semenanjung ...
  • 5 Jenama Foundation Terbaik, Beli Di Farmasi Je!
    Beberapa minggu sudah, penulis pernah mencadangkan beberapa jenama maskara terbaik yang mudah didapati pada harga berpatutan dari farmas...

nuffnang ads

Search This Blog

Pages

  • Home

About Me

Unknown
View my complete profile

Blog Archive

  • ►  2018 (371)
    • ►  June (17)
      • ►  Jun 22 (8)
      • ►  Jun 12 (1)
      • ►  Jun 11 (2)
      • ►  Jun 05 (6)
    • ►  May (6)
      • ►  May 31 (6)
    • ►  April (75)
      • ►  Apr 30 (1)
      • ►  Apr 27 (1)
      • ►  Apr 26 (15)
      • ►  Apr 25 (10)
      • ►  Apr 24 (11)
      • ►  Apr 18 (2)
      • ►  Apr 12 (4)
      • ►  Apr 10 (5)
      • ►  Apr 09 (9)
      • ►  Apr 05 (17)
    • ►  March (65)
      • ►  Mar 27 (7)
      • ►  Mar 22 (2)
      • ►  Mar 20 (4)
      • ►  Mar 13 (14)
      • ►  Mar 12 (11)
      • ►  Mar 08 (7)
      • ►  Mar 06 (1)
      • ►  Mar 05 (1)
      • ►  Mar 01 (18)
    • ►  February (103)
      • ►  Feb 28 (25)
      • ►  Feb 27 (27)
      • ►  Feb 26 (10)
      • ►  Feb 20 (1)
      • ►  Feb 19 (9)
      • ►  Feb 09 (13)
      • ►  Feb 06 (6)
      • ►  Feb 05 (5)
      • ►  Feb 02 (7)
    • ►  January (105)
      • ►  Jan 25 (11)
      • ►  Jan 23 (5)
      • ►  Jan 16 (6)
      • ►  Jan 15 (9)
      • ►  Jan 14 (7)
      • ►  Jan 10 (1)
      • ►  Jan 09 (2)
      • ►  Jan 08 (4)
      • ►  Jan 04 (24)
      • ►  Jan 03 (2)
      • ►  Jan 02 (21)
      • ►  Jan 01 (13)
  • ►  2017 (6160)
    • ►  December (11)
      • ►  Dec 30 (11)
    • ►  November (31)
      • ►  Nov 26 (9)
      • ►  Nov 07 (8)
      • ►  Nov 06 (3)
      • ►  Nov 01 (11)
    • ►  October (345)
      • ►  Oct 31 (4)
      • ►  Oct 25 (42)
      • ►  Oct 24 (5)
      • ►  Oct 23 (15)
      • ►  Oct 22 (3)
      • ►  Oct 18 (7)
      • ►  Oct 17 (27)
      • ►  Oct 16 (14)
      • ►  Oct 15 (6)
      • ►  Oct 13 (18)
      • ►  Oct 12 (44)
      • ►  Oct 11 (57)
      • ►  Oct 09 (47)
      • ►  Oct 06 (14)
      • ►  Oct 05 (1)
      • ►  Oct 04 (13)
      • ►  Oct 03 (17)
      • ►  Oct 02 (11)
    • ►  September (186)
      • ►  Sept 29 (3)
      • ►  Sept 26 (7)
      • ►  Sept 25 (18)
      • ►  Sept 21 (29)
      • ►  Sept 20 (10)
      • ►  Sept 19 (11)
      • ►  Sept 18 (2)
      • ►  Sept 14 (19)
      • ►  Sept 13 (28)
      • ►  Sept 11 (3)
      • ►  Sept 10 (15)
      • ►  Sept 08 (5)
      • ►  Sept 06 (22)
      • ►  Sept 05 (14)
    • ►  August (158)
      • ►  Aug 29 (10)
      • ►  Aug 28 (73)
      • ►  Aug 27 (2)
      • ►  Aug 21 (4)
      • ►  Aug 18 (17)
      • ►  Aug 17 (4)
      • ►  Aug 14 (13)
      • ►  Aug 11 (5)
      • ►  Aug 10 (4)
      • ►  Aug 09 (7)
      • ►  Aug 08 (1)
      • ►  Aug 06 (3)
      • ►  Aug 04 (2)
      • ►  Aug 03 (13)
    • ►  July (290)
      • ►  Jul 26 (9)
      • ►  Jul 25 (7)
      • ►  Jul 24 (25)
      • ►  Jul 23 (5)
      • ►  Jul 21 (13)
      • ►  Jul 18 (19)
      • ►  Jul 17 (18)
      • ►  Jul 14 (17)
      • ►  Jul 13 (75)
      • ►  Jul 12 (10)
      • ►  Jul 11 (64)
      • ►  Jul 10 (26)
      • ►  Jul 09 (2)
    • ►  June (522)
      • ►  Jun 30 (1)
      • ►  Jun 27 (3)
      • ►  Jun 22 (13)
      • ►  Jun 21 (41)
      • ►  Jun 20 (3)
      • ►  Jun 19 (68)
      • ►  Jun 16 (33)
      • ►  Jun 15 (87)
      • ►  Jun 13 (25)
      • ►  Jun 12 (26)
      • ►  Jun 09 (20)
      • ►  Jun 08 (60)
      • ►  Jun 07 (54)
      • ►  Jun 06 (53)
      • ►  Jun 05 (35)
    • ►  May (684)
      • ►  May 31 (6)
      • ►  May 22 (3)
      • ►  May 21 (14)
      • ►  May 20 (12)
      • ►  May 19 (3)
      • ►  May 18 (26)
      • ►  May 17 (63)
      • ►  May 16 (27)
      • ►  May 15 (25)
      • ►  May 14 (16)
      • ►  May 07 (9)
      • ►  May 06 (26)
      • ►  May 05 (74)
      • ►  May 04 (126)
      • ►  May 03 (51)
      • ►  May 02 (153)
      • ►  May 01 (50)
    • ►  April (759)
      • ►  Apr 29 (56)
      • ►  Apr 28 (37)
      • ►  Apr 27 (67)
      • ►  Apr 26 (87)
      • ►  Apr 25 (6)
      • ►  Apr 10 (4)
      • ►  Apr 09 (5)
      • ►  Apr 08 (78)
      • ►  Apr 07 (57)
      • ►  Apr 06 (52)
      • ►  Apr 05 (53)
      • ►  Apr 04 (43)
      • ►  Apr 03 (94)
      • ►  Apr 02 (28)
      • ►  Apr 01 (92)
    • ►  March (1744)
      • ►  Mar 31 (90)
      • ►  Mar 30 (74)
      • ►  Mar 29 (58)
      • ►  Mar 28 (50)
      • ►  Mar 27 (95)
      • ►  Mar 26 (58)
      • ►  Mar 25 (98)
      • ►  Mar 24 (94)
      • ►  Mar 23 (77)
      • ►  Mar 22 (43)
      • ►  Mar 21 (54)
      • ►  Mar 20 (43)
      • ►  Mar 19 (88)
      • ►  Mar 18 (65)
      • ►  Mar 17 (63)
      • ►  Mar 16 (94)
      • ►  Mar 15 (79)
      • ►  Mar 14 (35)
      • ►  Mar 11 (10)
      • ►  Mar 10 (43)
      • ►  Mar 09 (40)
      • ►  Mar 08 (27)
      • ►  Mar 07 (40)
      • ►  Mar 06 (62)
      • ►  Mar 05 (48)
      • ►  Mar 04 (63)
      • ►  Mar 03 (54)
      • ►  Mar 02 (13)
      • ►  Mar 01 (86)
    • ►  February (715)
      • ►  Feb 28 (10)
      • ►  Feb 27 (61)
      • ►  Feb 26 (31)
      • ►  Feb 24 (22)
      • ►  Feb 23 (31)
      • ►  Feb 22 (42)
      • ►  Feb 21 (30)
      • ►  Feb 20 (42)
      • ►  Feb 19 (43)
      • ►  Feb 18 (46)
      • ►  Feb 17 (39)
      • ►  Feb 16 (39)
      • ►  Feb 15 (24)
      • ►  Feb 14 (54)
      • ►  Feb 13 (25)
      • ►  Feb 12 (78)
      • ►  Feb 10 (53)
      • ►  Feb 09 (22)
      • ►  Feb 01 (23)
    • ►  January (715)
      • ►  Jan 30 (25)
      • ►  Jan 28 (19)
      • ►  Jan 27 (36)
      • ►  Jan 26 (27)
      • ►  Jan 24 (27)
      • ►  Jan 22 (22)
      • ►  Jan 21 (58)
      • ►  Jan 20 (20)
      • ►  Jan 19 (30)
      • ►  Jan 18 (39)
      • ►  Jan 17 (26)
      • ►  Jan 16 (36)
      • ►  Jan 15 (62)
      • ►  Jan 14 (22)
      • ►  Jan 13 (20)
      • ►  Jan 12 (33)
      • ►  Jan 11 (32)
      • ►  Jan 10 (26)
      • ►  Jan 05 (11)
      • ►  Jan 04 (22)
      • ►  Jan 03 (35)
      • ►  Jan 02 (34)
      • ►  Jan 01 (53)
  • ▼  2016 (6885)
    • ►  December (986)
      • ►  Dec 31 (12)
      • ►  Dec 30 (23)
      • ►  Dec 29 (15)
      • ►  Dec 28 (29)
      • ►  Dec 27 (32)
      • ►  Dec 26 (29)
      • ►  Dec 25 (39)
      • ►  Dec 24 (43)
      • ►  Dec 23 (29)
      • ►  Dec 22 (28)
      • ►  Dec 21 (46)
      • ►  Dec 20 (28)
      • ►  Dec 19 (36)
      • ►  Dec 18 (14)
      • ►  Dec 17 (24)
      • ►  Dec 16 (10)
      • ►  Dec 15 (43)
      • ►  Dec 14 (55)
      • ►  Dec 13 (38)
      • ►  Dec 12 (45)
      • ►  Dec 11 (26)
      • ►  Dec 10 (48)
      • ►  Dec 09 (34)
      • ►  Dec 08 (22)
      • ►  Dec 07 (29)
      • ►  Dec 06 (15)
      • ►  Dec 05 (45)
      • ►  Dec 04 (38)
      • ►  Dec 03 (41)
      • ►  Dec 02 (41)
      • ►  Dec 01 (29)
    • ►  November (600)
      • ►  Nov 30 (38)
      • ►  Nov 29 (36)
      • ►  Nov 28 (43)
      • ►  Nov 27 (22)
      • ►  Nov 26 (27)
      • ►  Nov 25 (39)
      • ►  Nov 24 (27)
      • ►  Nov 23 (37)
      • ►  Nov 22 (21)
      • ►  Nov 21 (32)
      • ►  Nov 20 (20)
      • ►  Nov 19 (31)
      • ►  Nov 18 (34)
      • ►  Nov 17 (29)
      • ►  Nov 16 (21)
      • ►  Nov 15 (33)
      • ►  Nov 14 (16)
      • ►  Nov 13 (3)
      • ►  Nov 12 (3)
      • ►  Nov 11 (1)
      • ►  Nov 09 (2)
      • ►  Nov 07 (14)
      • ►  Nov 04 (16)
      • ►  Nov 03 (17)
      • ►  Nov 02 (23)
      • ►  Nov 01 (15)
    • ►  October (374)
      • ►  Oct 31 (15)
      • ►  Oct 30 (2)
      • ►  Oct 29 (4)
      • ►  Oct 28 (25)
      • ►  Oct 27 (19)
      • ►  Oct 26 (16)
      • ►  Oct 25 (11)
      • ►  Oct 24 (14)
      • ►  Oct 23 (12)
      • ►  Oct 21 (14)
      • ►  Oct 20 (19)
      • ►  Oct 19 (21)
      • ►  Oct 18 (17)
      • ►  Oct 17 (15)
      • ►  Oct 16 (20)
      • ►  Oct 15 (12)
      • ►  Oct 14 (11)
      • ►  Oct 13 (21)
      • ►  Oct 12 (13)
      • ►  Oct 11 (6)
      • ►  Oct 10 (12)
      • ►  Oct 09 (17)
      • ►  Oct 08 (10)
      • ►  Oct 07 (11)
      • ►  Oct 06 (19)
      • ►  Oct 05 (13)
      • ►  Oct 03 (5)
    • ►  September (406)
      • ►  Sept 29 (6)
      • ►  Sept 28 (2)
      • ►  Sept 27 (12)
      • ►  Sept 16 (20)
      • ►  Sept 15 (34)
      • ►  Sept 14 (39)
      • ►  Sept 13 (32)
      • ►  Sept 12 (36)
      • ►  Sept 11 (18)
      • ►  Sept 10 (16)
      • ►  Sept 07 (6)
      • ►  Sept 06 (26)
      • ►  Sept 05 (14)
      • ►  Sept 04 (44)
      • ►  Sept 03 (17)
      • ►  Sept 02 (38)
      • ►  Sept 01 (46)
    • ►  August (777)
      • ►  Aug 31 (13)
      • ►  Aug 29 (22)
      • ►  Aug 28 (13)
      • ►  Aug 27 (26)
      • ►  Aug 26 (18)
      • ►  Aug 25 (14)
      • ►  Aug 24 (13)
      • ►  Aug 23 (22)
      • ►  Aug 22 (23)
      • ►  Aug 21 (20)
      • ►  Aug 20 (23)
      • ►  Aug 19 (13)
      • ►  Aug 18 (31)
      • ►  Aug 17 (36)
      • ►  Aug 16 (17)
      • ►  Aug 15 (33)
      • ►  Aug 14 (24)
      • ►  Aug 13 (28)
      • ►  Aug 12 (28)
      • ►  Aug 11 (28)
      • ►  Aug 10 (59)
      • ►  Aug 09 (33)
      • ►  Aug 08 (39)
      • ►  Aug 07 (23)
      • ►  Aug 06 (36)
      • ►  Aug 05 (23)
      • ►  Aug 04 (25)
      • ►  Aug 03 (17)
      • ►  Aug 02 (26)
      • ►  Aug 01 (51)
    • ▼  July (890)
      • ►  Jul 31 (27)
      • ►  Jul 30 (31)
      • ►  Jul 29 (29)
      • ►  Jul 28 (40)
      • ►  Jul 27 (32)
      • ►  Jul 26 (16)
      • ►  Jul 25 (5)
      • ►  Jul 24 (45)
      • ►  Jul 23 (16)
      • ►  Jul 22 (42)
      • ►  Jul 21 (11)
      • ►  Jul 20 (41)
      • ►  Jul 19 (31)
      • ►  Jul 18 (35)
      • ►  Jul 17 (41)
      • ►  Jul 16 (21)
      • ►  Jul 15 (23)
      • ►  Jul 14 (38)
      • ►  Jul 13 (49)
      • ►  Jul 12 (42)
      • ►  Jul 11 (25)
      • ►  Jul 10 (48)
      • ►  Jul 09 (33)
      • ►  Jul 08 (38)
      • ►  Jul 07 (19)
      • ►  Jul 06 (10)
      • ▼  Jul 05 (14)
        • Deciphering Starch Quality of Rice Kernels Using M...
        • Herbs to Lower Heart Rate
        • What Causes a Fast Resting Heart Rate?
        • Tips & Techniques to Slow the Heart Rate Down
        • How to Get Ripped Abs & Gain Muscle Weight
        • The Best Way to Get Abs Fast at Home
        • What Is the Difference Between Curcumin & Turmeric?
        • How to Use Turmeric to Reduce Inflammation
        • Can You Eat Turmeric Powder?
        • How to Eat Turmeric Root
        • Turmeric for Stretch Marks
        • How to Lose Weight with a Vegan Lifestyle
        • Vegan Meals With 400 Calories
        • Low-Carb Vegan Breakfast Ideas
      • ►  Jul 04 (13)
      • ►  Jul 03 (20)
      • ►  Jul 02 (26)
      • ►  Jul 01 (29)
    • ►  June (1003)
      • ►  Jun 30 (29)
      • ►  Jun 29 (43)
      • ►  Jun 28 (27)
      • ►  Jun 27 (33)
      • ►  Jun 26 (49)
      • ►  Jun 25 (30)
      • ►  Jun 24 (32)
      • ►  Jun 23 (42)
      • ►  Jun 22 (38)
      • ►  Jun 21 (20)
      • ►  Jun 20 (30)
      • ►  Jun 19 (37)
      • ►  Jun 18 (15)
      • ►  Jun 17 (12)
      • ►  Jun 16 (52)
      • ►  Jun 15 (59)
      • ►  Jun 14 (49)
      • ►  Jun 13 (38)
      • ►  Jun 12 (39)
      • ►  Jun 11 (44)
      • ►  Jun 10 (22)
      • ►  Jun 09 (34)
      • ►  Jun 08 (39)
      • ►  Jun 07 (28)
      • ►  Jun 06 (38)
      • ►  Jun 05 (19)
      • ►  Jun 04 (20)
      • ►  Jun 03 (27)
      • ►  Jun 02 (27)
      • ►  Jun 01 (31)
    • ►  May (648)
      • ►  May 31 (32)
      • ►  May 30 (48)
      • ►  May 29 (46)
      • ►  May 28 (43)
      • ►  May 27 (19)
      • ►  May 26 (37)
      • ►  May 25 (29)
      • ►  May 24 (22)
      • ►  May 23 (23)
      • ►  May 22 (18)
      • ►  May 21 (18)
      • ►  May 20 (22)
      • ►  May 19 (28)
      • ►  May 18 (12)
      • ►  May 17 (24)
      • ►  May 16 (9)
      • ►  May 15 (18)
      • ►  May 14 (13)
      • ►  May 13 (16)
      • ►  May 12 (6)
      • ►  May 11 (15)
      • ►  May 10 (15)
      • ►  May 09 (25)
      • ►  May 08 (14)
      • ►  May 07 (15)
      • ►  May 06 (10)
      • ►  May 04 (21)
      • ►  May 03 (22)
      • ►  May 02 (9)
      • ►  May 01 (19)
    • ►  April (490)
      • ►  Apr 30 (7)
      • ►  Apr 29 (21)
      • ►  Apr 28 (19)
      • ►  Apr 27 (15)
      • ►  Apr 26 (12)
      • ►  Apr 25 (19)
      • ►  Apr 24 (13)
      • ►  Apr 23 (24)
      • ►  Apr 22 (24)
      • ►  Apr 21 (22)
      • ►  Apr 20 (19)
      • ►  Apr 19 (46)
      • ►  Apr 18 (24)
      • ►  Apr 17 (15)
      • ►  Apr 16 (19)
      • ►  Apr 15 (8)
      • ►  Apr 14 (19)
      • ►  Apr 13 (22)
      • ►  Apr 12 (18)
      • ►  Apr 11 (11)
      • ►  Apr 10 (13)
      • ►  Apr 09 (12)
      • ►  Apr 08 (12)
      • ►  Apr 07 (15)
      • ►  Apr 06 (16)
      • ►  Apr 05 (10)
      • ►  Apr 04 (8)
      • ►  Apr 03 (15)
      • ►  Apr 01 (12)
    • ►  March (445)
      • ►  Mar 31 (7)
      • ►  Mar 30 (10)
      • ►  Mar 29 (17)
      • ►  Mar 28 (15)
      • ►  Mar 27 (8)
      • ►  Mar 26 (11)
      • ►  Mar 25 (10)
      • ►  Mar 24 (9)
      • ►  Mar 23 (13)
      • ►  Mar 22 (9)
      • ►  Mar 21 (13)
      • ►  Mar 20 (9)
      • ►  Mar 19 (15)
      • ►  Mar 18 (14)
      • ►  Mar 17 (11)
      • ►  Mar 16 (15)
      • ►  Mar 15 (23)
      • ►  Mar 14 (26)
      • ►  Mar 13 (20)
      • ►  Mar 12 (14)
      • ►  Mar 11 (18)
      • ►  Mar 10 (27)
      • ►  Mar 09 (18)
      • ►  Mar 08 (25)
      • ►  Mar 07 (11)
      • ►  Mar 06 (15)
      • ►  Mar 05 (18)
      • ►  Mar 04 (9)
      • ►  Mar 03 (14)
      • ►  Mar 02 (7)
      • ►  Mar 01 (14)
    • ►  February (258)
      • ►  Feb 29 (22)
      • ►  Feb 28 (14)
      • ►  Feb 27 (12)
      • ►  Feb 26 (4)
      • ►  Feb 25 (17)
      • ►  Feb 24 (16)
      • ►  Feb 23 (16)
      • ►  Feb 22 (8)
      • ►  Feb 21 (23)
      • ►  Feb 20 (6)
      • ►  Feb 19 (5)
      • ►  Feb 18 (3)
      • ►  Feb 17 (9)
      • ►  Feb 16 (17)
      • ►  Feb 15 (20)
      • ►  Feb 14 (10)
      • ►  Feb 13 (17)
      • ►  Feb 11 (3)
      • ►  Feb 10 (1)
      • ►  Feb 08 (2)
      • ►  Feb 07 (5)
      • ►  Feb 05 (2)
      • ►  Feb 04 (10)
      • ►  Feb 03 (7)
      • ►  Feb 02 (1)
      • ►  Feb 01 (8)
    • ►  January (8)
      • ►  Jan 30 (4)
      • ►  Jan 10 (4)
  • ►  2013 (23)
    • ►  February (18)
      • ►  Feb 07 (1)
      • ►  Feb 06 (2)
      • ►  Feb 05 (8)
      • ►  Feb 04 (5)
      • ►  Feb 02 (1)
      • ►  Feb 01 (1)
    • ►  January (5)
      • ►  Jan 31 (4)
      • ►  Jan 30 (1)

Report Abuse

Follower

Translate

Total Pageviews

nuffnang ads

Nuffnang Ads

nuffnang ads

Nuffnang Ads

Picture Window theme. Theme images by sndrk. Powered by Blogger.