Blog List

Thursday 28 July 2016

Investigation of thermal conductive properties of structural timbers at low temperature region using solid carbon dioxide as a chilling agent

Published Date

Volume 62, Issue 4, pp 356-362
First online: 

Title 

Investigation of thermal conductive properties of structural timbers at low temperature region using solid carbon dioxide as a chilling agent

  • Author 
  • BaekYong Choi 
  • Tsuyoshi Yoshimura

Abstract

Knowledge of the thermal conductive properties of wood at low temperatures aids the development and optimization of the application of a lethal cold temperature treatment for drywood termites. The present study investigates the relationship between the thermal conductive properties of wood at low temperatures and important factors, namely, the microstructural and anisotropy of wood using two types of solid carbon dioxide as a chilling agent. The results indicate that the thermal conductive properties of wood at low temperatures are mainly affected by the composition and morphological properties of wood (i.e., density/ratio of earlywood and latewood, proportion of heartwood and sapwood, pattern of growth ring). In particular, thermal conductive properties are mainly dependent on the pattern of the growth ring itself at low temperatures.

Keywords

Freezing remedial drywood termite treatment Thermal conductive properties Solid carbon dioxide

References

  1. 1.
    Forbes C, Ebeling W (1986) Update: liquid nitrogen controls drywood termites. IPM Pract 8(8):1–4
  2. 2.
    Rust M, Plaine EO, Reierson DA (1995) Laboratoty evaluation of low temperature for controlling drywood termites. Report prepared for the California Structural Pest Control Board. Department of Entomology, Univerity of California Riverside, Riverside, CA
  3. 3.
    Lewis VR, Haverty MI (1996) Evaluation of six techniques for control of the western drywood termite (Isoptera: Kalotermitidae) in structures. J Econ Entomol 89(4):922–934CrossRef
  4. 4.
    Lagüela S, Bison P, Peron F, Romagnoni P (2015) Thermal conductivity measurements on wood materials with transient plane source technique. Thermochim Acta 600:45–51CrossRef
  5. 5.
    Sonderegger W, Hering S, Niemz P (2011) Thermal behaviour of Norway spruce and European beech in and between the principal anatomical directions. Holzforschung 65(3):369–375CrossRef
  6. 6.
    Bouguerra A, Ait-Mokhtar A, Amiri O, Diop M (2001) Measurement of thermal conductivity, thermal diffusivity and heat capacity of highly porous building materials using transient plane source technique. Int Commun Heat Mass Transfer 28(8):1065–1078CrossRef
  7. 7.
    Clancy P (2001) Advances in modelling heat transfer through wood framed walls in fire. Fire Mater 25(6):241–254CrossRef
  8. 8.
    Steinhagen HP (1977) Thermal conductive properties of wood, green or dry, from −40 to +100 °C: a literature review. General technical report GTR-FPL-9. USDA Forest Service, Forest Products laboratory, Madison, Wisconsin, pp 3–23
  9. 9.
    Suleiman B, Larfeldt J, Leckner B, Gustavsson M (1999) Thermal conductivity and diffusivity of wood. Wood Sci Technol 33(6):465–473CrossRef
  10. 10.
    Mauranen A, Ovaska M, Koivisto J, Salminen L, Alava M (2015) Thermal conductivity of wood: effect of fatigue treatment. Wood Sci Technol 49(2):359–370CrossRef
  11. 11.
    Eitelberger J, Hofstetter K (2011) Prediction of transport properties of wood below the fiber saturation point—a multiscale homogenization approach and its experimental validation: part I: thermal conductivity. Compos Sci Technol 71(2):134–144CrossRef
  12. 12.
    Dupleix A, Kusiak A, Hughes M, Rossi F (2013) Measuring the thermal properties of green wood by the transient plane source (TPS) technique. Holzforschung 67(4):437–445
  13. 13.
    Missio AL, Mattos BD, de Cademartori PH, Pertuzzatti A, Conte B, Gatto DA (2015) Thermochemical and physical properties of two fast-growing eucalypt woods subjected to two-step freeze–heat treatments. Thermochim Acta 615:15–22CrossRef
  14. 14.
    Yu Z-T, Xu X, Fan L-W, Hu Y-C, Cen K-F (2011) Experimental measurements of thermal conductivity of wood species in China: effects of density, temperature, and moisture content. For Prod J 61(2):130–135
  15. 15.
    Dunlap F (1914) Density of wood substance and porosity of wood. J Agric Res 2:423–428
  16. 16.
    Asako Y, Kamikoga H, Nishimura H, Yamaguchi Y (2002) Effective thermal conductivity of compressed woods. Int J Heat Mass Transfer 45(11):2243–2253CrossRef
  17. 17.
    Kollmann FF, Côte WA Jr (1968) Chapter 6: physics of wood. Principles of wood science and technology, vol I. Solid wood. Springer, Berlin, pp 160–285CrossRef
  18. 18.
    Gu H-m, Zink-Sharp A (2005) Geometric model for softwood transverse thermal conductivity. Part I. Wood Fiber Sci 37(4):699–711
  19. 19.
    Wagner T, Götz S, Eska G (1994) Thermal conductivity of wood at low temperatures. Cryogenics 34(8):655–657CrossRef
  20. 20.
    Simpson W, TenWolde A (1999) Chapter 3: Physical properties and moisture relations of wood. Wood handbook—wood as an engineering material. Forest Products Laboratory, Maidison, pp 15–20
  21. 21.
    Ragland K, Aerts D, Baker A (1991) Properties of wood for combustion analysis. Bioresour Technol 37(2):161–168CrossRef
  22. 22.
    JIS A-9511 (2009) Preformed cellular plastics thermal insulation materials (in Japanese). Janpanese Stanard Association, Tokyo
  23. 23.
    Institute SAS (2013) PROC user’s manual, version, 11th edn. SAS Institute, Cary
  24. 24.
    MacLean J (1941) Thermal conductivity of wood. Heat Pip Air Cond 13(6):380–391
  25. 25.
    Lacoste C, Basso M, Pizzi A, Laborie M-P, Celzard A, Fierro V (2013) Pine tannin-based rigid foams: mechanical and thermal properties. Ind Crops Prod 43:245–250CrossRef
  26. 26.
    Niemz P, Sonderegger W, Hering S (2010) Thermal conductivity of Norway spruce and European beech in the anatomical directions. Annals of Warsaw University of Life Sciences–SGGW. For Wood Technol 72:66–72
  27. 27.
    Vay O, Obersriebnig M, Müller U, Konnerth J, Gindl-Altmutter W (2013) Studying thermal conductivity of wood at cell wall level by scanning thermal microscopy (SThM). Holzforschung 67(2):155–159CrossRef

For further details log on website :
http://link.springer.com/article/10.1007/s10086-016-1557-4

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...