Published Date
Abstract
Pretreatment is an essential step to effectively hydrolyze lignocellulosic polysaccharides. In this paper, we investigated the degree of decompositions of lignin and cell wall structure using dilute acid, alkali, and water pretreatments to assess both chemical and ultrastructural alterations during pretreatment. The thioacidolysis method showed that β-O-4 linkages in lignin were mostly cleaved after all pretreatments, in which the highest decrease of β-O-4 units was for NaOH pretreatment, followed by hot water and H2SO4 pretreatments. The amounts of lignin degradation compounds, including vanillin and syringaldehyde, in the supernatant water also differed between the three pretreatments. Field-emission scanning electron microscopy revealed clear differences among the pretreatments in decomposing the ultrastructure of the inner surface of the fiber cell walls. Small pores were formed due to degradation of a part of the warty layer of the innermost surface in H2SO4 pretreatment. The warty layer was more degraded in hot water pretreatment and thus the cellulose microfibrils of the secondary walls were exposed. NaOH pretreatment showed that the warty layer was almost completely decomposed. The comparative study of different pretreatments using chemical methods and microscopic observations led to a better understanding of decomposition of wood cell walls by thermochemical pretreatment.
References
For further details log on website :
http://link.springer.com/article/10.1007/s10086-016-1543-x
, Volume 62, Issue 3, pp 276-284
First online:
Title
Effect of thermochemical pretreatment on lignin alteration and cell wall microstructural degradation in Eucalyptus globulus: comparison of acid, alkali, and water pretreatments
- Author
- Kaori Saito
- , Yoshiki Horikawa
- , Junji Sugiyama
- , Takashi Watanabe
- , Yoshinori Kobayashi
- , Keiji Takabe
Abstract
Pretreatment is an essential step to effectively hydrolyze lignocellulosic polysaccharides. In this paper, we investigated the degree of decompositions of lignin and cell wall structure using dilute acid, alkali, and water pretreatments to assess both chemical and ultrastructural alterations during pretreatment. The thioacidolysis method showed that β-O-4 linkages in lignin were mostly cleaved after all pretreatments, in which the highest decrease of β-O-4 units was for NaOH pretreatment, followed by hot water and H2SO4 pretreatments. The amounts of lignin degradation compounds, including vanillin and syringaldehyde, in the supernatant water also differed between the three pretreatments. Field-emission scanning electron microscopy revealed clear differences among the pretreatments in decomposing the ultrastructure of the inner surface of the fiber cell walls. Small pores were formed due to degradation of a part of the warty layer of the innermost surface in H2SO4 pretreatment. The warty layer was more degraded in hot water pretreatment and thus the cellulose microfibrils of the secondary walls were exposed. NaOH pretreatment showed that the warty layer was almost completely decomposed. The comparative study of different pretreatments using chemical methods and microscopic observations led to a better understanding of decomposition of wood cell walls by thermochemical pretreatment.
References
- 1.
- 2.
- 3.
- 4.Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
- 5.
- 6.Watanabe T, Ohnishi J, Yamasaki Y, Kaizu S, Koshijima T (1989) Binding-site analysis of the ether linkages between lignin and hemicelluloses in lignin-carbohydrate complexes by DDQ-oxidation. Agric Biol Chem 53:2233–2252
- 7.
- 8.Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83CrossRef
- 9.Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H, Ralph J, Martínez AT, Del Río JC (2011) Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol 155:667–682CrossRefPubMedPubMedCentral
- 10.Chang H, Sarkanen KV (1973) Specis variation in lignin-effect of species on rate of kraft delignification. Tappi 56:132–134
- 11.Tsutsumi Y, Kondo R, Sakai K (1995) The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung 49:423–428CrossRef
- 12.Shimizu S, Yokoyama T, Akiyama T, Matsumoto Y (2012) Reactivity of lignin with different composition of aromatic syringyl/guaiacyl structures and erythro/threo side chain structures in β-O-4 type during alkaline delignification: as a basis for the different degradability of hardwood and softwood lignin. J Agric Food Chem 60:6471–6476CrossRefPubMed
- 13.Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523CrossRefPubMedPubMedCentral
- 14.Sjöström E (1993) Wood chemistry. Fundamentals and applications, 2nd edn. Academic Press, San Diego, pp 1–20
- 15.Fergus BJ, Procter AR, Scott JAN, Goring DAI (1969) The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci Technol 3:117–138CrossRef
- 16.
- 17.
- 18.
- 19.
- 20.Pu Y, Hu F, Huang F, Davison BH, Ragauskas AJ (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:15CrossRefPubMedPubMedCentral
- 21.DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE (2011) Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ Sci 4:4332–4339CrossRef
- 22.
- 23.Chundawat SPS, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4:973–984CrossRef
- 24.Alizadeh H, Teymouri F, Gilbert T, Dale BE (2005) Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Appl Biochem Biotechnol 124:1133–1141CrossRef
- 25.
- 26.Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y (2012) Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts. J Ind Microbiol Biotechnol 39:1741–1749CrossRefPubMed
- 27.Rolando C, Monties B, Lapierre C (1992) Thioacidolysis. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 334–349CrossRef
- 28.Fujimoto A, Matsumoto Y, Chang HM, Meshitsuka G (2005) Quantitative evaluation of milling effects on lignin structure during the isolation process of milled wood lignin. J Wood Sci 51:89–91CrossRef
- 29.Leschinsky M, Zuckerstätter G, Weber HK, Patt R, Sixta H (2008) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: influence of autohydrolysis intensity. Holzforschung 62:653–658
- 30.
- 31.Dence CW (1992) Determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–61CrossRef
- 32.
- 33.Kanazawa Y, Kishimoto T, Koda K, Fukushima K, Uraki Y (2009) Evaluation of reaction efficiency of thioacidolysis for cleavage of β-O-4 interunitary linkages by using β-O-4 type artificial lignin polymer. J Wood Chem Technol 29:178–190CrossRef
- 34.
- 35.
- 36.Jansen S, Smets E, Baas P (1998) Vestures in woody plants: a review. IAWA J 19:347–382CrossRef
For further details log on website :
http://link.springer.com/article/10.1007/s10086-016-1543-x
No comments:
Post a Comment