Published Date
, Volume 73, Issue 3, pp 691–702
Original Paper
Cite this article as:
Wang, L., Katzensteiner, K., Schume, H. et al. Annals of Forest Science (2016) 73: 691. doi:10.1007/s13595-016-0556-3
Abstract
References
For further details log on website :
http://link.springer.com/article/10.1007/s13595-016-0556-3
, Volume 73, Issue 3, pp 691–702
Title
Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure
Original Paper
- First Online:
- 20 May 2016
DOI: 10.1007/s13595-016-0556-3
Abstract
Key message
K fertilization led to a significant increase in fine root biomass, fine root length, and root tip number in the mineral soil layer but does not affect the ecomycorrhizal community structure in the organic horizon.
Context
Potassium (K) deficiency is common in Picea abies in the European Alps. Fertilization with other nutrients often influences fine root biomass and ectomycorrhizas, but less is known about the effects of K-fertilization.
Aims
The aim of the investigation was to determine the effects of K-fertilization on stem growth and fine root biomass of Picea abies, as well as the influence on ectomycorrhizal community structure of the fine roots.
Methods
Eight years after a single fertilization of K-deficient Picea abies with 200 kg K ha−1, fine roots were collected from 7 control and 6 K-fertilized plots. Fine root biomass and morphology were determined. The identification of ectomycorrhizal taxa was determined by morphotyping and by amplification of the internal transcribed spacer region of the nuclear ribosomal DNA.
Results
K-fertilization did not affect the amount of fine root biomass and ectomycorrhizal community structure in the Oi + Oe and Oa layers but led to a significant increase in fine root biomass, fine root length, and root tip number in the mineral soil layer.
Conclusion
An increase in growth due to K-fertilization leads to great exploration of the mineral soil by fine roots but does not affect the ectomycorrhizal community structure in the organic horizons.
Keywords
Picea abiesRadial growthPotassiumDiversityAbundanceReferences
- Agerer R (1997) Colour atlas of ectomycorrhizae. Einhorn-Verlag Eduard Dietenberger GmbH, Germany
- Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206. doi:10.1007/s00572-006-0035-zCrossRefPubMed
- Battie-Laclau P, Laclau JP, Beri C, Mietton L, Almeida Muniz MR, Cersózimo Arenque B, de Cassia PM, Jordan-Meille L, Bouillet JP, Nouvellon Y (2014) Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ 37:70–81. doi:10.1111/pce.12131CrossRefPubMed
- Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For Ecol Manage 119:51–62. doi:10.1016/S0378-1127(98)00509-XCrossRef
- Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant and Soil 1:63–73. doi:10.1007/bf02183055CrossRef
- Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536. doi:10.1111/nph.13208CrossRefPubMed
- Courty PE, Franc A, Pierrat JC, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801. doi:10.1128/AEM.01592-08CrossRefPubMedPubMedCentral
- Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113. doi:10.1111/j.1461-0248.2010.01494.xCrossRefPubMed
- Douglas RB, Parker VT, Cullings KW (2005) Belowground ectomycorrhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. For Ecol Manage 208:303–317. doi:10.1016/j.foreco.2004.12.011CrossRef
- Epron D, Laclau J-P, Almeida JC, Gonçalves JLM, Ponton S, Sette CR, Delgado-Rojas JS, Bouillet J-P, Nouvellon Y (2011) Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? Tree Physiol 32:667–679. doi:10.1093/treephys/tpr107CrossRefPubMed
- Ericsson T, Kähr M (1993) Growth and nutrition of birch seedlings in relation to potassium supply rate. Trees 7:78–85. doi:10.1007/BF00225473CrossRef
- Erland S, Taylor A (1999) Resupinate ectomycorrhizal fungal genera. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi Key genera in profile. Springer, Berlin, Heidelberg, pp 347–363CrossRef
- Finér L, Helmisaari H, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405. doi:10.1080/11263500701625897CrossRef
- Fink S (1992) Physiologische and strukturelle Veränderungen an Bäumen unter Magnesiummangel. Forstl Schriftenreihe 5:16–26
- Fransson P, Taylor AF, Finlay RD (2001) Elevated atmospheric CO2 alters root symbiont community structure in forest trees. New Phytol 152:431–442. doi:10.1046/j.0028-646X.2001.00276.xCrossRef
- Führer E, Neuhuber F (1998) Status diagnosis and rehabilitation concepts for the forest area Gleinalm. Forstliche Shriftenreihe 13:59–62
- Glatzel G (1991) The impact of historic land use and modern forestry on nutrient relations of Central European forest ecosystems. Fertil Res 27:1–8. doi:10.1007/BF01048603CrossRef
- Godbold D, Vašutová M, Wilkinson A, Edwards-Jonášová M, Bambrick M, Smith AR, Pavelka M, Cudlin P (2015) Elevated atmospheric CO2 affects ectomycorrhizal species abundance and increases sporocarp production under field conditions. Forests 6:1256–1273. doi:10.3390/f6041256CrossRef
- Hahn G, Marschner H (1998) Effect of acid irrigation and liming on root growth of Norway spruce. Plant and Soil 199:11–22. doi:10.1023/A:1004254709452CrossRef
- Hay TN, Phillips LA, Nicholson BA, Jones MD (2015) Ectomycorrhizal community structure and function in interior spruce forests of British Columbia under long term fertilization. For Ecol Manage 350:87–95. doi:10.1016/j.foreco.2015.04.023CrossRef
- Helmisaari HS, Hallbäcken L (1999) Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. For Ecol Manage 119:99–110. doi:10.1016/S0378-1127(98)00514-3CrossRef
- Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617. doi:10.1016/j.tplants.2006.10.007CrossRefPubMed
- Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–357. doi:10.1111/j.1469-8137.2009.03122.xCrossRefPubMed
- Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P (2014) Nutrient availability could constraint forest ecosystem response to global change in Europe. Global Change Research Symposium 2014-Human and Ecosystem Response to global Change, Evidence and Application. Ostuni, Brindisi, Italy., http://hdl.handle.net/2078.1/152055. Accessed 18 September 2014
- Jones D, Rousk J, Edwards-Jones G, DeLuca T, Murphy D (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi:10.1016/j.soilbio.2011.10.012CrossRef
- Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151. doi:10.1111/j.1365-2435.2010.01699.xCrossRef
- Katzensteiner K, Schume H, Wresowar M, Spitzer H (2008) Effects of potassium nutrition upon drought stress disposition of Norway spruce. (Picea abies Karst.). Final report BMLFUW GZ LE.3.2.3./0013-IV 2/2005
- Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824. doi:10.1111/j.1469-8137.2006.01786.xCrossRefPubMed
- Kreutzer K (1995) Effects of forest liming on soil processes. Plant and Soil 168:447–470. doi:10.1007/978-94-011-0455-5_51CrossRef
- Laclau JP, Almeida JC, Gonçalves JLM, Saint-André L, Ventura M, Ranger J, Moreira RM, Nouvellon Y (2009) Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations. Tree Physiol 29:111–124. doi:10.1093/treephys/tpn010CrossRefPubMed
- Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21:297–308. doi:10.1007/s00572-010-0338-yCrossRefPubMed
- Linder S, Troeng E (1980) Photosynthesis and transpiration of 20-year-old Scots pine. Ecological Bulletins 32:165–181
- Lõhmus K, Oja T, Lasn R (1989) Specific root area: a soil characteristic. Plant and Soil 119:245–249. doi:10.1007/BF02370415CrossRef
- Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159:89–102. doi:10.1007/BF00000098
- Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res 131:1461–1472. doi:10.1007/s10342-012-0615-8CrossRef
- Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147. doi:10.2307/1940664CrossRef
- Nohrstedt HÖ (2001) Response of coniferous forest ecosystems on mineral soils to nutrient additions: a review of Swedish experiences. Scand J For Res 16:555–573. doi:10.1080/02827580152699385CrossRef
- Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci U S A 102:18052–18056. doi:10.1073/pnas.0509478102CrossRefPubMedPubMedCentral
- Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107:19368–19373. doi:10.1073/pnas.1006463107CrossRefPubMedPubMedCentral
- Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AF, Pronk A (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442. doi:10.1080/11263500701626069CrossRef
- Ouimet R, Moore J-D (2015) Effects of fertilization and liming on tree growth, vitality and nutrient status in boreal balsam fir stands. For Ecol Manage 345:39–49. doi:10.1016/j.foreco.2015.02.032CrossRef
- Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174. doi:10.1111/j.1469-8137.2007.02155.xCrossRefPubMed
- Persson H, Ahlström K (1990) The effects of forest liming on fertilization on fine-root growth. Water Air Soil Pollut 54:365–375. doi:10.1007/BF00298679CrossRef
- Pestana M, Santolamazza-Carbone S (2011) Defoliation negatively affects plant growth and the ectomycorrhizal community of Pinus pinaster in Spain. Oecologia 165:723–733. doi:10.1007/s00442-010-1760-8CrossRefPubMed
- Peter M, Ayer F, Egli S (2001) Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below-ground ectomycorrhizal species composition. New Phytol 149:311–325. doi:10.1046/j.1469-8137.2001.00030.xCrossRef
- Raspe S (1997) Fine-root development. In: Hüttl RF, Schaaf W (eds) Magnesium deficiency in forest ecosystems Kluwer. Springer, Dordrecht, pp 309–330CrossRef
- Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263. doi:10.1139/B04-123CrossRef
- Rosling A, Landeweert R, Lindahl B, Larsson KH, Kuyper T, Taylor A, Finlay R (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783. doi:10.1046/j.1469-8137.2003.00829.xCrossRef
- Rygiewicz PT, Bledsoe CS (1984) Mycorrhizal effects on potassium fluxes by northwest coniferous seedlings. Plant Physiol 76:918–923, doi: 10.1104/pp.76.4.918
- Smith AR, Lukac M, Bambrick M, Miglietta F, Godbold DL (2013) Tree species diversity interacts with elevated CO2 to induce a greater root system response. Glob Chang Biol 19:217–228. doi:10.1111/gcb.12039CrossRefPubMed
- Tamm CO (1991) Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and ecosystem stability. Springer Berlin Heidelberg, GermanyCrossRef
- Tripler CE, Kaushal SS, Likens GE, Todd Walter M (2006) Patterns in potassium dynamics in forest ecosystems. Ecol Lett 9:451–466. doi:10.1111/j.1461-0248.2006.00891.xCrossRefPubMed
- Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830. doi:10.1093/treephys/19.12.823CrossRefPubMed
- Wurzburger N, Wright SJ (2015) Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96:2137–2146. doi:10.1890/14-1362.1CrossRefPubMed
- Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H (2011) A European morpho-functional classification of humus forms. Geoderma 164:138–145. doi:10.1016/j.geoderma.2011.05.016CrossRef
For further details log on website :
http://link.springer.com/article/10.1007/s13595-016-0556-3
No comments:
Post a Comment