Blog List

Monday, 22 August 2016

Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure

Published Date
Volume 73, Issue 3, pp 691–702

Title 

Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure

  • Klaus Katzensteiner
  • Helmut Schume
  • Marcela Van Loo
  • Douglas L. Godbold

Original Paper
DOI: 10.1007/s13595-016-0556-3


Cite this article as: 
Wang, L., Katzensteiner, K., Schume, H. et al. Annals of Forest Science (2016) 73: 691. doi:10.1007/s13595-016-0556-3

Abstract



Key message

K fertilization led to a significant increase in fine root biomass, fine root length, and root tip number in the mineral soil layer but does not affect the ecomycorrhizal community structure in the organic horizon.

Context

Potassium (K) deficiency is common in Picea abies in the European Alps. Fertilization with other nutrients often influences fine root biomass and ectomycorrhizas, but less is known about the effects of K-fertilization.

Aims

The aim of the investigation was to determine the effects of K-fertilization on stem growth and fine root biomass of Picea abies, as well as the influence on ectomycorrhizal community structure of the fine roots.

Methods

Eight years after a single fertilization of K-deficient Picea abies with 200 kg K ha−1, fine roots were collected from 7 control and 6 K-fertilized plots. Fine root biomass and morphology were determined. The identification of ectomycorrhizal taxa was determined by morphotyping and by amplification of the internal transcribed spacer region of the nuclear ribosomal DNA.

Results

K-fertilization did not affect the amount of fine root biomass and ectomycorrhizal community structure in the Oi + Oe and Oa layers but led to a significant increase in fine root biomass, fine root length, and root tip number in the mineral soil layer.

Conclusion

An increase in growth due to K-fertilization leads to great exploration of the mineral soil by fine roots but does not affect the ectomycorrhizal community structure in the organic horizons.

Keywords

Picea abiesRadial growthPotassiumDiversityAbundance



References

  1. Agerer R (1997) Colour atlas of ectomycorrhizae. Einhorn-Verlag Eduard Dietenberger GmbH, Germany
  2. Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206. doi:10.1007/s00572-006-0035-zCrossRefPubMed
  3. Battie-Laclau P, Laclau JP, Beri C, Mietton L, Almeida Muniz MR, Cersózimo Arenque B, de Cassia PM, Jordan-Meille L, Bouillet JP, Nouvellon Y (2014) Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ 37:70–81. doi:10.1111/pce.12131CrossRefPubMed
  4. Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. For Ecol Manage 119:51–62. doi:10.1016/S0378-1127(98)00509-XCrossRef
  5. Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant and Soil 1:63–73. doi:10.1007/bf02183055CrossRef
  6. Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD (2015) Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536. doi:10.1111/nph.13208CrossRefPubMed
  7. Courty PE, Franc A, Pierrat JC, Garbaye J (2008) Temporal changes in the ectomycorrhizal community in two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801. doi:10.1128/AEM.01592-08CrossRefPubMedPubMedCentral
  8. Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113. doi:10.1111/j.1461-0248.2010.01494.xCrossRefPubMed
  9. Douglas RB, Parker VT, Cullings KW (2005) Belowground ectomycorrhizal community structure of mature lodgepole pine and mixed conifer stands in Yellowstone National Park. For Ecol Manage 208:303–317. doi:10.1016/j.foreco.2004.12.011CrossRef
  10. Epron D, Laclau J-P, Almeida JC, Gonçalves JLM, Ponton S, Sette CR, Delgado-Rojas JS, Bouillet J-P, Nouvellon Y (2011) Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? Tree Physiol 32:667–679. doi:10.1093/treephys/tpr107CrossRefPubMed
  11. Ericsson T, Kähr M (1993) Growth and nutrition of birch seedlings in relation to potassium supply rate. Trees 7:78–85. doi:10.1007/BF00225473CrossRef
  12. Erland S, Taylor A (1999) Resupinate ectomycorrhizal fungal genera. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi Key genera in profile. Springer, Berlin, Heidelberg, pp 347–363CrossRef
  13. Finér L, Helmisaari H, Lõhmus K, Majdi H, Brunner I, Børja I, Eldhuset T, Godbold D, Grebenc T, Konôpka B (2007) Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst 141:394–405. doi:10.1080/11263500701625897CrossRef
  14. Fink S (1992) Physiologische and strukturelle Veränderungen an Bäumen unter Magnesiummangel. Forstl Schriftenreihe 5:16–26
  15. Fransson P, Taylor AF, Finlay RD (2001) Elevated atmospheric CO2 alters root symbiont community structure in forest trees. New Phytol 152:431–442. doi:10.1046/j.0028-646X.2001.00276.xCrossRef
  16. Führer E, Neuhuber F (1998) Status diagnosis and rehabilitation concepts for the forest area Gleinalm. Forstliche Shriftenreihe 13:59–62
  17. Glatzel G (1991) The impact of historic land use and modern forestry on nutrient relations of Central European forest ecosystems. Fertil Res 27:1–8. doi:10.1007/BF01048603CrossRef
  18. Godbold D, Vašutová M, Wilkinson A, Edwards-Jonášová M, Bambrick M, Smith AR, Pavelka M, Cudlin P (2015) Elevated atmospheric CO2 affects ectomycorrhizal species abundance and increases sporocarp production under field conditions. Forests 6:1256–1273. doi:10.3390/f6041256CrossRef
  19. Hahn G, Marschner H (1998) Effect of acid irrigation and liming on root growth of Norway spruce. Plant and Soil 199:11–22. doi:10.1023/A:1004254709452CrossRef
  20. Hay TN, Phillips LA, Nicholson BA, Jones MD (2015) Ectomycorrhizal community structure and function in interior spruce forests of British Columbia under long term fertilization. For Ecol Manage 350:87–95. doi:10.1016/j.foreco.2015.04.023CrossRef
  21. Helmisaari HS, Hallbäcken L (1999) Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. For Ecol Manage 119:99–110. doi:10.1016/S0378-1127(98)00514-3CrossRef
  22. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617. doi:10.1016/j.tplants.2006.10.007CrossRefPubMed
  23. Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–357. doi:10.1111/j.1469-8137.2009.03122.xCrossRefPubMed
  24. Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P (2014) Nutrient availability could constraint forest ecosystem response to global change in Europe. Global Change Research Symposium 2014-Human and Ecosystem Response to global Change, Evidence and Application. Ostuni, Brindisi, Italy., http://hdl.handle.net/2078.1/152055. Accessed 18 September 2014
  25. Jones D, Rousk J, Edwards-Jones G, DeLuca T, Murphy D (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. doi:10.1016/j.soilbio.2011.10.012CrossRef
  26. Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151. doi:10.1111/j.1365-2435.2010.01699.xCrossRef
  27. Katzensteiner K, Schume H, Wresowar M, Spitzer H (2008) Effects of potassium nutrition upon drought stress disposition of Norway spruce. (Picea abies Karst.). Final report BMLFUW GZ LE.3.2.3./0013-IV 2/2005
  28. Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824. doi:10.1111/j.1469-8137.2006.01786.xCrossRefPubMed
  29. Kreutzer K (1995) Effects of forest liming on soil processes. Plant and Soil 168:447–470. doi:10.1007/978-94-011-0455-5_51CrossRef
  30. Laclau JP, Almeida JC, Gonçalves JLM, Saint-André L, Ventura M, Ranger J, Moreira RM, Nouvellon Y (2009) Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations. Tree Physiol 29:111–124. doi:10.1093/treephys/tpn010CrossRefPubMed
  31. Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21:297–308. doi:10.1007/s00572-010-0338-yCrossRefPubMed
  32. Linder S, Troeng E (1980) Photosynthesis and transpiration of 20-year-old Scots pine. Ecological Bulletins 32:165–181
  33. Lõhmus K, Oja T, Lasn R (1989) Specific root area: a soil characteristic. Plant and Soil 119:245–249. doi:10.1007/BF02370415CrossRef
  34. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159:89–102. doi:10.1007/BF00000098
  35. Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res 131:1461–1472. doi:10.1007/s10342-012-0615-8CrossRef
  36. Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73:1139–1147. doi:10.2307/1940664CrossRef
  37. Nohrstedt HÖ (2001) Response of coniferous forest ecosystems on mineral soils to nutrient additions: a review of Swedish experiences. Scand J For Res 16:555–573. doi:10.1080/02827580152699385CrossRef
  38. Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJ, Ceulemans R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci U S A 102:18052–18056. doi:10.1073/pnas.0509478102CrossRefPubMedPubMedCentral
  39. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107:19368–19373. doi:10.1073/pnas.1006463107CrossRefPubMedPubMedCentral
  40. Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AF, Pronk A (2007) Specific root length as an indicator of environmental change. Plant Biosyst 141:426–442. doi:10.1080/11263500701626069CrossRef
  41. Ouimet R, Moore J-D (2015) Effects of fertilization and liming on tree growth, vitality and nutrient status in boreal balsam fir stands. For Ecol Manage 345:39–49. doi:10.1016/j.foreco.2015.02.032CrossRef
  42. Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174. doi:10.1111/j.1469-8137.2007.02155.xCrossRefPubMed
  43. Persson H, Ahlström K (1990) The effects of forest liming on fertilization on fine-root growth. Water Air Soil Pollut 54:365–375. doi:10.1007/BF00298679CrossRef
  44. Pestana M, Santolamazza-Carbone S (2011) Defoliation negatively affects plant growth and the ectomycorrhizal community of Pinus pinaster in Spain. Oecologia 165:723–733. doi:10.1007/s00442-010-1760-8CrossRefPubMed
  45. Peter M, Ayer F, Egli S (2001) Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and below-ground ectomycorrhizal species composition. New Phytol 149:311–325. doi:10.1046/j.1469-8137.2001.00030.xCrossRef
  46. Raspe S (1997) Fine-root development. In: Hüttl RF, Schaaf W (eds) Magnesium deficiency in forest ecosystems Kluwer. Springer, Dordrecht, pp 309–330CrossRef
  47. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263. doi:10.1139/B04-123CrossRef
  48. Rosling A, Landeweert R, Lindahl B, Larsson KH, Kuyper T, Taylor A, Finlay R (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783. doi:10.1046/j.1469-8137.2003.00829.xCrossRef
  49. Rygiewicz PT, Bledsoe CS (1984) Mycorrhizal effects on potassium fluxes by northwest coniferous seedlings. Plant Physiol 76:918–923, doi: 10.1104/pp.76.4.918
  50. Smith AR, Lukac M, Bambrick M, Miglietta F, Godbold DL (2013) Tree species diversity interacts with elevated CO2 to induce a greater root system response. Glob Chang Biol 19:217–228. doi:10.1111/gcb.12039CrossRefPubMed
  51. Tamm CO (1991) Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and ecosystem stability. Springer Berlin Heidelberg, GermanyCrossRef
  52. Tripler CE, Kaushal SS, Likens GE, Todd Walter M (2006) Patterns in potassium dynamics in forest ecosystems. Ecol Lett 9:451–466. doi:10.1111/j.1461-0248.2006.00891.xCrossRefPubMed
  53. Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830. doi:10.1093/treephys/19.12.823CrossRefPubMed
  54. Wurzburger N, Wright SJ (2015) Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96:2137–2146. doi:10.1890/14-1362.1CrossRefPubMed
  55. Zanella A, Jabiol B, Ponge JF, Sartori G, De Waal R, Van Delft B, Graefe U, Cools N, Katzensteiner K, Hager H (2011) A European morpho-functional classification of humus forms. Geoderma 164:138–145. doi:10.1016/j.geoderma.2011.05.016CrossRef


For further details log on website :
http://link.springer.com/article/10.1007/s13595-016-0556-3

No comments:

Post a Comment

Advantages and Disadvantages of Fasting for Runners

Author BY   ANDREA CESPEDES  Food is fuel, especially for serious runners who need a lot of energy. It may seem counterintuiti...