Published Date
, Volume 62, Issue 3, pp 285–293
Abstract
We isolated and identified compounds in medicinal plant extracts that could control melanogenesis. Sudanese medicinal plants were extracted with methanol (MeOH) and 50 % ethanol (EtOH)/water, yielding 104 extracts that were screened for melanogenic activity using B16 melanoma cells. The MeOH extract of Terminalia brownii bark dose-dependently enhanced intracellular and extracellular melanogenesis, with no cytotoxicity. Furthermore, we isolated and identified the components in T. brownii MeOH extract. Gallic acid (1), α,β-punicalagin (2), α,β-terchebulin (3), ellagic acid 4-O-α-l-rhamnopyranoside (4), ellagic acid (5), and 3,4,3′-tri-O-methylellagic acid (6) were isolated by chromatography and identified using nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization (MALDI) or ultra-performance liquid chromatography–time-of-flight mass spectrometry (UPLC–TOFMS), and ultraviolet (UV) spectroscopy data. Among the isolated compounds, 2, 3, 5, and 6 enhanced melanogenesis. Furthermore, compound 1 inhibited intracellular and extracellular melanogenesis with no cytotoxicity.
References
For further details log on website :
http://link.springer.com/article/10.1007/s10086-016-1546-7
, Volume 62, Issue 3, pp 285–293
Title
Screening for melanogenesis-controlled agents using Sudanese medicinal plants and identification of active compounds in the methanol extract of Terminalia brownii bark
Abstract
We isolated and identified compounds in medicinal plant extracts that could control melanogenesis. Sudanese medicinal plants were extracted with methanol (MeOH) and 50 % ethanol (EtOH)/water, yielding 104 extracts that were screened for melanogenic activity using B16 melanoma cells. The MeOH extract of Terminalia brownii bark dose-dependently enhanced intracellular and extracellular melanogenesis, with no cytotoxicity. Furthermore, we isolated and identified the components in T. brownii MeOH extract. Gallic acid (1), α,β-punicalagin (2), α,β-terchebulin (3), ellagic acid 4-O-α-l-rhamnopyranoside (4), ellagic acid (5), and 3,4,3′-tri-O-methylellagic acid (6) were isolated by chromatography and identified using nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization (MALDI) or ultra-performance liquid chromatography–time-of-flight mass spectrometry (UPLC–TOFMS), and ultraviolet (UV) spectroscopy data. Among the isolated compounds, 2, 3, 5, and 6 enhanced melanogenesis. Furthermore, compound 1 inhibited intracellular and extracellular melanogenesis with no cytotoxicity.
References
- 1.Lukiewicz S (1972) The biological role of melanin. I. New concepts and methodological approaches. Folia Histochem Cyto 10:93–108
- 2.Wang H, Pan Y, Tang X, Huang Z (2006) Isolation and characterization of melanin from Osmanthus fragrans’ seeds. LWT-Food Sci Technol 39:496–502CrossRef
- 3.Alvaro SF, Jos NRL, Francisco GC (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11CrossRef
- 4.Batubara I, Darusman LK, Mitsunaga T, Rahminiwati M, Djauhari E (2010) Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J Biol Sci 2:138–144
- 5.
- 6.Muddathir AM, Mitsunaga T (2013) Evaluation of anti-acne activity of selected Sudanese medicinal plants. J Wood Sci 59:73–79CrossRef
- 7.
- 8.
- 9.Mbwambo ZH, Moshi MJ, Masimba PJ, Kapingu MC, Nondo RSO (2007) Antimicrobial activity and brine shrimp toxicity of extracts of Terminalia brownii roots and stem. BMC Complement Altern Med 7:9CrossRefPubMedPubMedCentral
- 10.Gallo MB, Rocha WC, da Cunha US, Diogo FA, da Silva FC, Vieira PC, Vendramim JD, Fernandes JB, da Silva MF, Batista-Pereira LG (2006) Bioactivity of extracts and isolated compounds from Vitex polygama(Verbenaceae) and Siphoneugena densiflora(Myrtaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). Pest Manag Sci 62:1072–1081CrossRefPubMed
- 11.Pfundstein B, El Desouky SK, Hull WE, Haubner R, Erben G, Owen RW (2010) Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): characterization, quantitation and determination of antioxidant capacities. Phytochemistry 71:1132–1148CrossRefPubMed
- 12.Silva O, Gomes TE, Wolfender JL, Marston A, Hostettmann K (2000) Application of high performance liquid chromatography coupled with ultraviolet spectroscopy and electrospray mass spectrometry to the characterisation of ellagitannins from Terminalia macroptera roots. Pharm Res 17:1396–1401CrossRefPubMed
- 13.Lin T, Nonaka G, Nishioka I, Ho F (1990) Tannins and related compounds. CII. Structures of terchebulin, an ellagitannin having a novel teraphenylcarboxylic acid (terchebulic acid) moiety, and biogenetically related tannins from Terminalia chebulaRetz. Chem Pharm Bull 38:3004–3008CrossRef
- 14.
- 15.Guo Z, Xu Y, Han L, Bo X, Huang C, Ni L (2011) Antioxidant and cytotoxic activity of the acetone extracts of root of Euphorbia hylonoma and its ellagic acid derivatives. J Med Plants Res 5:5584–5589
- 16.
- 17.
- 18.Yamauchi K, Mitsunaga T, Batubara I (2011) Isolation, identification and tyrosinase inhibitory activities of the extractives from Allamanda cathartica. Nat Resour 2:167–172
- 19.
- 20.
- 21.
- 22.
- 23.
For further details log on website :
http://link.springer.com/article/10.1007/s10086-016-1546-7
No comments:
Post a Comment