Published Date
First online:
Abstract
Wood-based materials are fabricated with adhesives composed of various materials derived from fossil fuels. It is difficult to identify replacements for these chemical adhesives. This study explored nanofiber technologies as an alternative to these adhesives. In this study, we focused on reinforcement effects of lingo-cellulose nanofiber (LCNF) on fiberboards made from softwood and hardwood fiber. We discuss the density effects of reinforcement with LCNF because the density of medium-density fiberboard (MDF), which is widely used for construction, is standardized at about 0.60–0.80 g/cm3. Fiberboards were manufactured with three densities (0.60, 0.75, and 1.00 g/cm3). For softwood fiberboards, the bending properties for LCNF-mixed boards were higher than those for the control fiberboards at all densities. In this paper, control fiberboard means fiberboard with fiber only. For hardwood fiberboards, the bending properties for LCNF-mixed fiberboard for 1.00 g/cm3-density board were higher than those for the control fiberboard. For internal bond strength (IB), the IB for LCNF-mixed fiberboard was higher than that for the control fiberboard. The thickness swelling (TS) and weight change (WC) with water absorption for fiberboards containing LCNF were lower than those for control fiberboards. As a conclusion, physical and mechanical properties of the resulting fiberboards were significantly improved with the addition of LCNF, especially for softwood fiberboards, due to close binding between LCNF and wood fibers.
References
For further details log on website :
http://link.springer.com/article/10.1007/s10086-016-1582-3
First online:
Title
Reinforcement of fiberboard containing lingo-cellulose nanofiber made from wood fibers
- Author
- Yoichi Kojima
- , Ayaka Kawabata
- , Hikaru Kobori
- , Shigehiko Suzuki
- , Hirokazu Ito
- , Rie Makise
- , Masaki Okamoto
Abstract
Wood-based materials are fabricated with adhesives composed of various materials derived from fossil fuels. It is difficult to identify replacements for these chemical adhesives. This study explored nanofiber technologies as an alternative to these adhesives. In this study, we focused on reinforcement effects of lingo-cellulose nanofiber (LCNF) on fiberboards made from softwood and hardwood fiber. We discuss the density effects of reinforcement with LCNF because the density of medium-density fiberboard (MDF), which is widely used for construction, is standardized at about 0.60–0.80 g/cm3. Fiberboards were manufactured with three densities (0.60, 0.75, and 1.00 g/cm3). For softwood fiberboards, the bending properties for LCNF-mixed boards were higher than those for the control fiberboards at all densities. In this paper, control fiberboard means fiberboard with fiber only. For hardwood fiberboards, the bending properties for LCNF-mixed fiberboard for 1.00 g/cm3-density board were higher than those for the control fiberboard. For internal bond strength (IB), the IB for LCNF-mixed fiberboard was higher than that for the control fiberboard. The thickness swelling (TS) and weight change (WC) with water absorption for fiberboards containing LCNF were lower than those for control fiberboards. As a conclusion, physical and mechanical properties of the resulting fiberboards were significantly improved with the addition of LCNF, especially for softwood fiberboards, due to close binding between LCNF and wood fibers.
References
- 1.Umemura K, Ueda T, Kawai S (2011) Characterization of wood-based molding with citric acid. J Wood Sci 58:38–45CrossRef
- 2.Umemura K, Ueda T, Sasa SM, Kawai S (2012) Application of citric acid as natural adhesive for wood. J Appl Polym Sci 123:1991–1996CrossRef
- 3.Umemura K, Ueda T, Kawai S (2012) Effects of molding temperature on physical properties of wood-based molding bonded with citric acid. For Prod J 62:63–68
- 4.Umemura K, Sugihara O, Kawai S (2013) Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard. J Wood Sci 59:203–208CrossRef
- 5.Ikeda K, Takatani M, Sakamoto K, Okamoto T (2008) Development of fully bio-based composite: wood/cellulose diacetate/poly (lactic acid) composite. Holzforschung 62:154–156CrossRef
- 6.Takatani M, Ikeda K, Sakamoto K, Okamoto T (2008) Cellulose esters as compatibillizers in wood/poly (lactic acid) composite. J Wood Sci 54:54–61CrossRef
- 7.Kondo T (2008) New aspects of cellulose nanofiber (in Japanese). Mokuzai Gakkaishi 54:107–115CrossRef
- 8.Yano H (2007) New developments in bio-based materials (in Japanese). CMC Publishing Co. Ltd., Tokyo, pp 63–70
- 9.Lee S, Ohkita T (2003) Mechanical and thermal flow properties of wood flour biodegradable polymer composites. J Appl Polym Sci 90(7):1900–1905CrossRef
- 10.Nakagaito AN, Yano H (2005) Novel highstrength biocomposites based on microfibrillated cellulose having nano-order-unit weblike network structure. Appl Phys A 80(1):155–159CrossRef
- 11.Okubo K, Fujii T, Yamashita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with microfibrillated cellulose. JSME Int J Ser A 48(4):199–204CrossRef
- 12.
- 13.Sehaqui H, Allais M, Zhou Q, Berglund LA (2011) Wood cellulose biocomposites with fibrous structure at micro-and nanoscale. Comp Sci Technol 71(3):382–387CrossRef
- 14.Kojima Y, Minamino J, Isa A, Suzuki S, Ito H, Makise R, Okamoto M (2013) Binding effect of cellulose nanofibers in wood flour board. J Wood Sci 59:396–401CrossRef
- 15.Kojima Y, Isa A, Kobori H, Suzuki S, Ito H, Makise R, Okamoto M (2014) Evaluation of binding effects in wood flour board containing lingo-cellulose nanofibers. Materials 7:6853–6864CrossRef
- 16.Kojima Y, Ishino A, Kobori H, Suzuki S, Ito H, Makise R, Higuchi I, Okamoto M (2015) reinforcement of wood flour board containing lingo-cellulose nanofiber made from recycled wood. J Wood Sci 61:492–499CrossRef
- 17.Halvarsson S, Edlund H, Norgren M (2009) Manufacture of non-resin wheat straw fiberboards. Ind Crops Prod 29(2–3):437–445CrossRef
- 18.Wuzella G, Mahendran AR, Batge T, Jury S, Kandelbauer A (2011) Novel, binder-free fiber reinforced composites based on a renewable resource from the reed-like plant Typha sp. Ind Crops Prod 33(3):683–689CrossRef
- 19.Baskaran M, Hashim R, Said N, Raffi SM, Balakrishnan K, Sudesh K, Sulaiman O, Arai T, Kosugi A, Mori Y, Sugimoto T, Sato M (2012) Properties of binderless particleboard from oil palm trunk with addition of polyhydroxyalkanoates. Comp Part B: Eng 43(3):1109–1116CrossRef
- 20.
- 21.Mancera C, El Mansouri NE, Pelach MA, Francesc F, Salvado J (2012) Feasibility of incorporating lignins in fiberboards made from agricultural waste. Waste Manage 32(10):1962–1967CrossRef
- 22.Sun YC, Lin Z, Peng WX, Yuan TQ, Xu F, Wu YQ, Yang J, Wang YS, Sun RC (2014) Chemical changes of raw materials and manufactured binderless boards during hot pressing: lignin isolation and characterization. Bioresource 9(1):1055–1071
- 23.Takahashi H, Endoh K, Suzuki H (1972) Studies on handling process of wood fiber for dry processing of fiberboard. I. On particle size of ground fiber (in Japanese). Mokuzai Gakkaishi 18:9–13
- 24.Takahashi H, Endoh K, Suzuki H (1972) Studies on handling process of wood fiber for dry processing of fiberboard. II. Particle size distribution of ground wood fiber (in Japanese). Mokuzai Gakkaishi 18:15–19
- 25.Takahashi H, Endoh H, Ohsawa K, Moriyama M, Endoh K (1974) Effects of characteristics of fiber ground by refiner on physical properties of fiberboard. I. Shape of a fiber and mechanical strength of fiberboard (in Japanese). Mokuzai Gakkaishi 20:430–434
- 26.JIS A 5905 (2014) JIS standard specification for fiberboards. Japanese Standards Association, Tokyo
- 27.Ito H, Kumari R, Takatani M, Uchiyama M, Okamto T, Hattori H, Fujiyoshi I (2008) Viscoelastic evaluation of effects of fiber size and composition on cellulose-polypropylene composite of high filler content. Polym Eng Sci 48:415–423CrossRef
For further details log on website :
http://link.springer.com/article/10.1007/s10086-016-1582-3
No comments:
Post a Comment