Published Date
Author(s)
Samuel E. Agarry, Mujidat O. Aremu, Oluwafunmilayo A. Aworanti
For further details log on website :
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=33117
Author(s)
Samuel E. Agarry, Mujidat O. Aremu, Oluwafunmilayo A. Aworanti
ABSTRACT
In this study, the potential effects of palm kernel oil (PKO), pineapple peels derived-activated carbon (PPAC) and NPK fertilizer (20:10:10) as amendment agents on the natural bioattenuation of 2,6-dichlorophenol (2,6-DCP) in tropical agricultural soil were investigated. The effect of PPAC dosage on 2,6-DCP biodegradation was also studied. Column reactors containing soil were spiked with 2,6-dichlorophenol (2,6-DCP) wastewater (300 mg/l) and amended with PKO, NPK fertilizer and PPAC alone or in combinations. The rates of 2,6-DCP biodegradation were studied for a remediation period of 42 days under laboratory conditions. The results showed that there was a positive relationship between the rate of 2,6-DCP biodegradation, bacterial growth rate and presence of NPK fertilizer and PPAC (alone or in combination) in soil column microcosms contaminated with 2,6-DCP. The 2,6-DCP biodegradation data fitted well to the first-order kinetic model. The model revealed that 2,6-DCP contaminated-soil microcosms amended with NPK fertilizer and PPAC (alone or in combination) had higher biodegradation rate constants (k) as well as lower half-life times (t1/2) than soil column microcosms amended with PKO and unamended soil (natural attenuation) remediation system. Thus, the use of combined NPK fertilizer and activated carbon (NPK + PPAC) to enhance 2,6-DCP degradation in the soil could be one of the severally sought bioremediation strategies of remediating natural ecosystem (environment) contaminated with organic chemicals.
[1] | N. E. Onwurah, V. N. Ogugua, N. B. Onyike, A. E. Ochonogor and O. F. Otitoju, “Crude Oil Spills in the Environment, Effects and Some Innovative Clean-Up Biotechnologies,” International Journal of Environmental Research, Vol. 1, No. 4, 2007, pp. 307-320. |
[2] | W. W. Eckenfelder Jr., “Industrial Water Pollution Controll,” 2nd Edition, McGraw-Hill Publishers, New York, 1989. |
[3] | B.-H. Bae, R. L. Autenrieth and J. S. Bonner, “Kinetics of Multiple Phenolic Compounds Degradation with a Mixed Culture in a Continuous Flow Reactor,” Water Environmental Research, Vol. 67, No. 2, 1995, pp. 215-223. doi:10.2175/106143095X131376 |
[4] | H. Bae, T. Yamagishi and Y. Suwa, “Evidence for Degradation of 2-Chlorophenol by Enrichment Cultures under Denitrifying Conditions,” Microbiology, Vol. 148, 2002, pp. 221-227. |
[5] | A. P. Annachhatre and S. H. Gheewala, “Biodegradation of Chlorinated Phenolic Compounds,” Biotechnology Advances, Vol. 14, No. 1, 1996, pp. 35-56. doi:10.1016/0734-9750(96)00002-X |
[6] | K. A. Short, J. D. Doyle, R. J. King, R. J. Seidler, G. Stotzky and R. H. Olsen, “Effects of 2, 4-Dichlorophenol, a Metabolite of a Genetically Engineered Bacterium, and 2, 4-Dichlorophenoxyacetate on Some Microorganisms-Mediated Ecological Processes in Soil,” Applied Environmental Microbiology, Vol. 57, No. 2, 1991, pp. 412-418. |
[7] | N. Fattahi, Y. Assadi and M. R. Hosaseini, “Determination of Chlorophenols in Water Sample Using Simultaneous Dispersive Liquid-Liquid Microextraction and Derivatization Followed by Gas Chromatography-Electron-Capture Detection,” Journal of Chromatography A, Vol. 1157, No. 1-2, 2007, pp. 23-29. |
[8] | B. K. Hamad, A.-Md. Noor and A.A. Rahim, “Removal of 4-Chloro-2-Methoxyphenol from Aqueous Solution by Adsorption to Oil Palm Shell Activated Carbon Activated with K2CO3,” Journal of Physical Sciences, Vol. 22, No. 1, 2011, pp 39-55. |
[9] | Agency for Toxic Substance and Disease Registry, “Toxicological Profile for Chlorophenols,” US Department of Health and Human Services, Public Health Service, Atlanta, 1989. |
[10] | D. C. Yee and T. K. Wood, “2,4-Dichlorophenol Degradation Using Streptomyces Viridosporus T7A Lignin Peroxidase,” Biotechnology Progress, Vol. 13, No. 1, 1997, pp. 53-59. doi:10.1021/bp960091x |
[11] | P. M. Armenante, D. Kafkewitz, G. A. Lewandowski and C. J. Jou, “Anaerobic-Aerobic Treatment of Halogenated Phenolic Compounds,” Water Research, Vol. 33, No. 3, 1999, pp. 681-692. doi:10.1016/S0043-1354(98)00255-3 |
[12] | I. A. W. Tan, A. L. Ahmad and B. H. Hameed, “Adsorption Isotherm, Kinetics, Thermodynamics and Desorption Studies of 2,4,6-Trichlorophenol on Oil Palm Empty Fruit Bunch-Based Activated Carbon,” Journal of Hazardous Material, Vol. 164, No. 2-3, 2009, pp. 473-482. doi:10.1016/j.jhazmat.2008.08.025 |
[13] | A. Nuhoglu and B. Yalcin, “Modeling of Phenol Removal in a Batch Reactor,” Process Biochemistry, Vol. 40, No. 3-4, 2005, pp. 1233-1239. doi:10.1016/j.procbio.2004.04.003 |
[14] | M. H. El-Naas, S. A. Al-Muhtaseb and S. Makhlouf, “Biodegradation of Phenol by Pseudomonas Putida Immobilized in Polyvinyl Alcohol (PVA) Gel,” Journal of Hazardous Material, Vol. 164, No. 2-3, 2009, pp. 720-725. doi:10.1016/j.jhazmat.2008.08.059 |
[15] | P. B. Bedient H. S. Rifai and C. J. Newell, “Groundwater Contamination, Transport and Remediation,” Prentice Hall, Englewood Cliffs, 1994. |
[16] | P. P. E. Carriere and F. A. Mesania, “Enhanced Biodegradation of Creosote-Contaminated Soil,” Waste Management, Vol. 15, No. 8, 1995, pp. 579-583. |
[17] | J. W. C. Wong, K. M. Lai, K. K. Ma and M. Fang, “Isolation and Optimization of PAH-Degradative Bacteria from Contaminated Soil for PAHs Bioremediation,” Water Air Soil Pollution, Vol. 139, No. 1-4, 2002, pp. 1-13. doi:10.1023/A:1015883924901 |
[18] | P. H. Lee, K. J. Doick and K. T. Semple, “The Development of Phenanthrene Catabolism in Soil Amended with Transformer Oil,” FEMS Microbiology Letters, Vol. 228, No. 2, 2003, pp. 217-223. doi:10.1016/S0378-1097(03)00751-1 |
[19] | D. Sarkar, M. Ferguson, R. Datta and S. Birnbaum, “Bioremediation of Petroleum Hydrocarbons in Contaminated Soils: Comparison of Biosolids Addition, Carbon Supplementation, and Monitored Natural Attenuation,” Environmental Pollution, Vol. 136, No. 1, pp. 187-195. doi:10.1016/j.envpol.2004.09.025 |
[20] | S. Llado, N. Jime′nez, M. Vinas and A. M. Solanas, “Microbial Populations Related to PAH Biodegradation in an Aged Biostimulated Creosote-Contaminated Soil,” Biodegradation, Vol. 20, No. 5, 2009, pp. 593-601. doi:10.1007/s10532-009-9247-1 |
[21] | X. D. Huang, Y. El-Alawi, D. M. Penrose, B. R. Glick and B. M. Grenberg, “Responses of Three Grass Species to Cresote during Phytoremediation,” Environmental Pollution, Vol. 130, No. 3, 2004, pp. 453-464. doi:10.1016/j.envpol.2003.12.018 |
[22] | M. Mellendorf, G. Soja, H. Martin, M. H. Gerzabek and A. Watzinger, “Soil Microbial Community Dynamics and Phenanthrene Degradation as Affected by Rape Oil Application,” Applied Soil Ecology, Vol. 46, No. 3, 2010, pp. 329-334. doi:10.1016/j.apsoil.2010.10.008 |
[23] | L. M. Carmichael and F. K. Pfaender, “The Effect of Inorganic and Organic Supplements on the Microbial Degradation of Phenanthrene and Pyrene in Soils,” Biodegradation, Vol. 8, No. 1, 1997, pp. 1-13. doi:10.1023/A:1008258720649 |
[24] | J. H. Berg Schuur and B. Mattiasson, “Separation of Coal-Tar Constituents from Soil Particles in a Two-Liquid Phase Slurry System,” Environmental Technology, Vol. 24, No. 6, 2003, pp. 755-765. doi:10.1080/09593330309385612 |
[25] | J. K. Pannu, A. Singh and O. P. Ward, “Vegetable Oil as a Contaminated Soil Remediation Amendment: Application of Peanut Oil for Extraction of Polycyclic Aromatic Hydrocarbons from Soil,” Process Biochemistry, Vol. 39, No. 10, 2004, pp. 1211-1216. doi:10.1016/S0032-9592(03)00254-1 |
[26] | Z. Gong, K. Alef, B.-M. Wilke and P. Li, “Dissolution and Removal of PAHs from a Contaminated Soil Using Sunflower Oil,” Chemosphere, Vol. 58, No. 3, 2005, pp. 291-298. doi:10.1016/j.chemosphere.2004.07.035 |
[27] | S. B. Kim, D. J. Kim, S. Lee and W. A. Jury, “Effect of Sorption on Benzene Biodegradation in Sandy Soil,” Environmental Toxicology and Chemistry, Vol. 22, No. 10, 2003, pp. 2306-2311. doi:10.1897/02-511 |
[28] | C. N. Owabor and E. O. Aluyor, “Application of Adsorbent as a Novel Technique during Biodegradation of a Polycyclic Aromatic Hydrocarbon (Anthracene),” African Journal of Biotechnology, Vol. 7, No. 18, 2008, pp. 3321-3325. |
[29] | B. Wen, R. J. Li, S. Z. Zhang, X. Q. Shan, J. Fang, K. Xiao and S. U. Khan, “Immobilization of Pentachlorophenol in Soil Using Carbonaceous Material Amendments,” Environmental Pollution, Vol. 157, No. 3, 2009, pp. 968-974. doi:10.1016/j.envpol.2008.10.015 |
[30] | J. Tang and W. J. Weber, “Development of Engineered Natural Organic Sorbents for Environmental Applications. 2. Sorption Characteristics and Capacities with Respect to Phenanthrene,” Environmental Science and Technology, Vol. 40, No. 5, 2006, pp. 1657-1663. doi:10.1021/es051665+ |
[31] | J. R. Zimmerman, U. Ghosh, R. N. Millward, T. S. Bridges and R. G. Luthy, “Addition of Carbon Sorbents to Reduce PCB and PAH Bioavailability in Marine Sediments: Physicochemical Tests,” Environmental Science and Technology, Vol. 38, No. 20, 2004, pp. 5458-5464. doi:10.1021/es034992v |
[32] | S. P. Pradhan and V. J. Srivastava, “A Pilot-Scale Demonstration of an Innovative Soil Remediation Process: Air Emissions Quality,” Journal of Air Waste Management Association, Vol. 47, No. 6, 1997, pp. 710-715. doi:10.1080/10473289.1997.10463928 |
[33] | A. P. Khodadoust, G. A. Sorial, G. J. Wilson, M. T. Suidan, R. A. Griffiths and R. C. Brenner, “Integrated System for Remediation of Contaminated Soils,” Journal of Environmental Engineering—ASCE, Vol. 125, No. 11, 1999, pp. 1033-1041. doi:10.1061/(ASCE)0733-9372(1999)125:11(1033) |
[34] | R. N. Millward, T. S. Bridges, U. Ghosh, J. R. Zimmerman and R. G. Luthy, “Addition of Activated Carbon to Sediments to Reduce PCB Bioaccumulation by a Polychaete (Neanthes arenaceodentata) and an Amphipod (Leptocheirus plumulosus),” Environmental Science and Technology, Vol. 39, No. 8, 2005, pp. 2880-2887. doi:10.1021/es048768x |
[35] | B. H. Hameed, “Spent Tea Leaves: A New Non-Conventional and Low-Cost Adsorbent for Removal of Basic Dye from Aqueous Solution,” Journal of Hazardous Material, Vol. 161, No. 2-3, 2009, pp. 253-259. doi:10.1016/j.jhazmat.2008.04.019 |
[36] | Y. Li, B. Chen and L. Zhu, “Enhanced Sorption of Polycyclic Aromatic Hydrocarbons from Aqueous Solution by Modified Pine Bark,” Bioresource Technology, Vol. 101, No. 19, 2010, pp. 7307-7313. doi:10.1016/j.biortech.2010.04.088 |
[37] | B. Chen, M. Yuana and H. Liu, “Removal of Polycyclic Aromatic Hydrocarbons from Aqueous Solution Using Plant Residue Materials as a Biosorbent,” Journal of Hazardous Material, Vol. 188, No. 1-3, 2011, pp. 436-442. doi:10.1016/j.jhazmat.2011.01.114 |
[38] | A. O. Alade, O. S. Amuda, T. J. Afolabi and A. A. Okoya, “Adsorption of Naphthalene onto Activated Carbons Derived from Milk Bush Kernel Shell and Flamboyant Pod,” Journal of Environmental Chemistry and Ecotoxicology, Vol. 4, No. 7, 2012, pp. 124-132. |
[39] | S. E. Agarry and C. N. Owabor, “Evaluation of the Adsorption Potential of Rubber (Hevea brasiliensis) Seed Pericarp-Activated Carbon in Abattoir Wastewater Treatment and in the Removal of Iron (iii) Ions from Aqueous Solution,” Nigerian Journal of Technology, Vol. 31, No. 3, pp. 1-14. |
[40] | E. O. McLean, “Soil pH and Lime Requirement,” In: C. A. Black, Ed., Methods in Soil Analysis: Chemical and Microbiological Properties, WI American Society of Agronomy, Madison, 1982. |
[41] | D. W. Nelson and L. E. Sommers, “Determination of Organic Carbon,” In: A. L. Page, R. H. Miller and D. R. Keeney, Eds., Method of Soil Analysis, American Society of Agronomy, Madison, 1982, p. 539. |
[42] | J. M. Bremner and C. S. Mulvaney, “Total Nitrogen Determination,” In: A. L. Page, R. H. Miller and D. R. Keeney, Eds., Method of Soil Analysis, Vol. 2, American Society of Agronomy, Madison, 1982, p. 595. |
[43] | S. R. Olsen and L. E. Sommers, “Determination of Available Phosphorus,” In: A. L. Page, R. H. Miller and D. R. Keeney Eds., Method of Soil Analysis, American Society of Agronomy, Madison, 1982, p. 403. |
[44] | S. C. Amanchukwu, A. Obafemi and G. C. Okpokwasili, “Hydrocarbon Degradation and Utilization by a Palm Wine Yeast Isolates,” FEMS Microbiology Letters, Vol. 57, No. 2, 1989, pp. 151-154. doi:10.1111/j.1574-6968.1989.tb03290.x |
[45] | S. E. Agarry, C. N. Owabor and R. O. Yusuf, “Bioremediation of Soil Artificially Contaminated with Petroleum Hydrocarbon Mixtures: Evaluation of the use of Animal Manure and Chemical Fertilizer,” Bioremediation Journal, Vol. 14, No. 4, 2010, pp. 189-195. doi:10.1080/10889868.2010.514965 |
[46] | M. A. Zahed, H. Abdul Aziz, M. H. Isa, L. Mohajeri, S. Mohajeri and S. R. M. Kutty, “Kinetic Modeling and Half Life Study on Bioremediation of Crude Oil Dispersed by Corexit 9500,” Journal of Hazardous Material, Vol. 185, No. 2-3, 2011, pp. 1027-1031. doi:10.1016/j.jhazmat.2010.10.009 |
[47] | P. Y. Yeung, R. L. Johnson and J. G. Xu, “Biodegradation of Petroleum Hydrocarbons in Soil as Affected by Heating and Forced Aeration,” Journal of Environmental Quality, Vol. 26, 1997, pp. 1511-1576. doi:10.2134/jeq1997.00472425002600060009x |
[48] | G. K. Vasilyeva, L. P. Bakhaeva and E. G. Surovtseva, “The Use of in Situ Soil Adsorptive Bioremediation Following an Accidental Spill of Propanil in the Krasnodar Region of Russia,” Land Contamination and Reclamation, Vol. 4, No. 4, 1996, pp. 263-268. |
[49] | G. K. Vasilyeva, V. D. Kreslavski, P. J. Shea and B.-T. Oh, “Potential of Activated Carbon to Decrease 2,4,6-Trinitritoluene Toxicity and Accelerate Soil Decontamination,” Environmental Toxicology and Chemistry, Vol. 20, No. 5, 2001, pp. 965-971. doi:10.1002/etc.5620200505 |
[50] | G. K. Vasilyeva, V. D. Kreslavski, P. J. Shea and J.-M. Bollag, “Accelerated Transformation and Binding of 2,4,6-Trinitrotoluene in Soil Amended with Activated Carbon,” In: A. Violante, P. M. Huang, J. M. Bollag and L. Gianfreda, Eds., Soil Mineral-Organic Matter-Microorganism Interactions and Ecosysstems Health, Development in Soil Science 28 B, Elsevier, Amsterdam, 2002, pp. 157-168. doi:10.1016/S0166-2481(02)80014-9 |
[51] | G. K. Vasilyeva, L. P. Bakhaeva, E. R. Strijakova and P. J. Shea, “Biodegradation of 3,4-Dichloroaniline and 2,4,6-Trinitrotoluene in Soil in the Presence of Natural Adsorbents,” Environmental Chemistry Letters, Vol. 1, No. 3, 2003, pp. 176-183. doi:10.1007/s10311-003-0033-8 |
[52] | G. K. Vasilyeva, E. R. Strijakova and P. J. Shea, “Use of Activated Carbon for Soil Bioremediation In: T. Wardowska, et al., Eds., Soil and Water Pollution Monitoring, Protection and Remediation, Springer Publishers, New York, 2006, pp. 3-23. doi:10.1007/978-1-4020-4728-2_20 |
[53] | T. Xu, L. Lou, L. Luo, R. Cao, D. Duan and Y. Chen, “Effect of Bamboo Biochar on Pentachlorophenol Leachability and Bioavailability in Agricultural Soil,” Science Total Environment, Vol. 414, 2012, pp. 727-731. doi:10.1016/j.scitotenv.2011.11.005 |
[54] | L. Pizzul, A. Sjogren, Md. P. Castillo and M. J. Stenstro, “Degradation of Polycyclic Aromatic Hydrocarbons in Soil by a Two-Step Sequential Treatment,” Biodegradation, Vol. 18, No. 5, 2007, pp. 607-616. doi:10.1007/s10532-006-9093-3 |
[55] | J. Pannu, A. Singh and O. Ward, “Influence of Peanut Oil on Microbial Degradation of Polycyclic Aromatic Hydrocarbons,” Canadian Journal of Microbiology, Vol. 49, No. 8, 2003, pp. 508-513. doi:10.1139/w03-068 |
For further details log on website :
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=33117
No comments:
Post a Comment