Published Date
Article
Cite this article as:
Ayrilmis, N., Jarusombuti, S., Fueangvivat, V. et al. Fibers Polym (2011) 12: 919. doi:10.1007/s12221-011-0919-1
Author
In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the internal bond strength of the composites were negatively influenced by increasing coir fiber content. However, the flexural strength, the tensile strength, and the hardness of the composites improved with increasing the coir fiber content up to 60 wt %. The flame retardancy of the composites improved with increasing coir fiber content. The results suggest that an optimal composite panel formulation for automotive interior applications is a mixture of 60 wt % coir fiber, 37 wt % PP powder, and 3 wt % MAPP.
References
For further details log on website :
http://link.springer.com/article/10.1007/s12221-011-0919-1
Article
- First Online:
- 03 November 2011
DOI: 10.1007/s12221-011-0919-1
Author
In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the internal bond strength of the composites were negatively influenced by increasing coir fiber content. However, the flexural strength, the tensile strength, and the hardness of the composites improved with increasing the coir fiber content up to 60 wt %. The flame retardancy of the composites improved with increasing coir fiber content. The results suggest that an optimal composite panel formulation for automotive interior applications is a mixture of 60 wt % coir fiber, 37 wt % PP powder, and 3 wt % MAPP.
References
- A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).CrossRef
- 2.P. Chow, R. J. Lambert, C. T. Bowers, N. McKenzie, J. A. Youngquist, J. H. Muehl, and A. M. Kryzsik, “Proceedings of the 2000 International Kenaf Symposium”, p.139, 2000.
- 3.R. Rahman, M. Hasan, M. Huque, and N. Islam, J. Reinfor. Plast. Compos., 29, 445 (2010).CrossRef
- 4.P. V. Joseph, G. Mathew, K. Joseph, S. Thomas, and P. Pradeep, J. Appl. Polym. Sci., 88, 602 (2003).CrossRef
- 5.A. Arbelaiz, B. G. Cantero, R. Llano-Ponte, A. Valea, and I. Mondragon, Compos. Part A-Appl. S., 36, 1637 (2005).CrossRef
- 6.A. Schirp and J. Stender, Eur. J. Wood Prod., 68, 219 (2010).CrossRef
- 7.A. K. Mohanty, M. Misra, and L. T. Drzal, “Natural Fibers, Biopolymers and Biocomposites”, p.875, Boca Ranton, Taylor & Francis, 2005.
- 8.K. V. Rijswijk, W. D. Brouwer, and A. Beukers, “Natural Fibre Composites”, p.61, FAO Economic and Social Development Department, Rome, Italy, 2001.
- 9.R. N. Arancon, “Natural Fiber Production and Food Securtiy: Coir in Asia and the Pacific”, p.63, Asian and Pacific Coconut Community, Jakarta, 2007.
- 10.FAO, “International Year of Natural Fibres”, p.5, International Year of Natural Fibres Coordinating Unit, Trade and Markets Division, Rome, 2009.
- 11.DIN CEN/TS 15534-1, Wood-plastics Composites (WPC) — Part 1: Test Methods for Characterisation of WPC Materials and Products DIN Deutsches Institut für Normung e.V., Berlin, Germany, 2007.
- 12.EN 317, Particleboards and Fiberboards — Determination of Swelling in Thickness After Immersion in Water. European Committee for Standardization, Brussel, Belgium, 1993.
- 13.EN 323, Wood-based Panels — Determination of Density, 1993.
- 14.EN 310, Determination of Modulus of Elasticity in Bending and Bending Strength, 1993.
- 15.EN 319, Particleboards and Fiberboards — Determination of Tensile Strength Perpendicular to the Plane of the Board, 1993.
- 16.ASTM D 1037-06a, Standard Test Methods for Evaluating Properties of Wood-based Fiber and Particle Panel Materials, ASTM Int, West Conshohocken, PA, 2006.
- 17.ASTM D 2863-10, Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candlelike Combustion of Plastics (oxygen index). ASTM Int, West Conshohocken, PA, 2010.
- 18.D. J. Gardner and D. Murdock, “Extrusion of wood plastic composites”, p.5, University of Maine, Maine, 2010.
- 19.H. Hargitai, I. Racz, and R. D. Anandjiwala, Thermoplast. Compos. Comp., 21, 165 (2008).CrossRef
- 20.A. Bismarck, A. Askargorta, J. Springer, T. L. B. Wielage, A. S. Ilja, and H. H. Limbach, Polym. Composite, 23, 872 (2004).CrossRef
- 21.DIN CEN/TS 15534-2, Wood-plastics Composites (WPC) — Part 2: Characterisation of WPC Materials. DIN Deutsches Institut für Normung e.V., Berlin, Germany, 2007.
- 22.EN 312, Particleboards — Specifications, 2010.
- 23.EN 622-5, Fiberboards Specifications — Requirements for Dry Process Boards (MDF), 2009.
- 24.N. Ayrilmis, “The Effect of Tree Species on Technological Properties of MDF”, MSc Thesis, Institute of Natural Sciences, Istanbul University, Istanbul, 2000.
- 25.M. Karina, H. Onggo, and A. Syampurwadi, J. Biol. Sci., 7, 393 (2007).CrossRef
- 26.N. Ayrilmis and S. Jarusombuti, J. Compos. Mater., 45, 103 (2011).CrossRef
- 27.S. T. Georgopoulos, P. A. Tarantili, E. Avgerinos, A. G. Andreopoulos, and E. G. Koukios, Polym. Degrad. Stabil., 90, 303 (2005).CrossRef
- 28.R. G. Raj, B. V. Kokta, G. Groluleau, and C. Daneault, Pol. Plast. Technol. Eng., 29, 339 (1990).CrossRef
- 29.J. E. Winandy and A. M. Krzysik, Wood Fiber Sci., 39, 450 (2007).
- 30.A. N. Shebani, A. J. Van Reenen, and M. Meincken, J. Compos. Mater., 43, 1305 (2009).CrossRef
- 31.S. M. Zabihzadeh, Bioresources, 5, 316 (2010).
- 32.T. M. Maloney, “Modern Particleboard and Dry-Process Fiberboard Manufacturing”, p.255, Miller Freeman Publications, San Francisco, 1977.
- 33.M. Chaharmahali, M. Tajvidi, and S. K. Najafi, Polym. Composite, 29, 606 (2008).CrossRef
- 34.A. K. Bledzki, A. A. Mamun, and O. Faruk, eXPRESS Polym. Lett., 1, 755 (2007).CrossRef
- 35.A. Nourbakhsh and A. Ashori, Polym. Polym. Compos., 16, 283 (2008).
- 36.P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).CrossRef
- 37.A. Ashori and A. Nourbakhsh, Waste Manage., 29, 1291 (2009).CrossRef
- 38.S. J. Jamil, I. Ahmed, and A. Ibrahim, J. Polym. Res., 13, 315 (2006).CrossRef
- 39.M. Haque, M. Hasan, S. Islam, and E. Ali, Bioresource Technol., 100, 4903 (2009).CrossRef
- 40.S. Mishra, J. B. Naik, and Y. P. Patil, Compos. Sci. Technol., 60, 1729 (2000).CrossRef
- 41.H. P. S. Abdul Khalil, A. M. Siti, and A. K. Mohd Omar, Bioresources, 1, 220 (2006).
- 42.R. H. White, Wood Fiber Sci., 12, 113 (1979).
- 43.G. Camino, L. Costa, and E. Casorati, J. Appl. Polym. Sci., 35, 1863 (1998).CrossRef
- 44.B. Li and M. Xu, Polym. Degrad. Stabil., 91, 1380 (2006).CrossRef
- 45.S. H. Chiu and W. K. Wang, Polymer, 39, 1951 (1998).CrossRef
- 46.M. T. T. That and J. Denault, “Proceedings of International Conference on Flax and Other Bast Plants”, p.211, Saskatoon, Canada, 2008.
- 47.N. M. Stark, R. H. White, S. A. Mueller, and T. A. Osswald, Polym. Degrad. Stabil., 95, 1903 (2010).CrossRef
- 48.A. Gani and I. Naruse, Renew. Energ., 32, 649 (2007).CrossRef
- 49.R. A. Susott, Forest Sci., 28, 839 (1982).
- 50.E. D. Weil, M. H. Hirschler, N. G. Patel, M. M. Said, and S. Shakir, Fire Mater., 16, 159 (1992).CrossRef
For further details log on website :
http://link.springer.com/article/10.1007/s12221-011-0919-1
No comments:
Post a Comment